Surface Modification of Glass Textile for the Reinforcement of a Cement-Based Composite: A Review
Abstract
:Featured Application
Abstract
1. Introduction
2. FRCM and TRC
3. Durability of Glass Fibers in Cement-Based Composites
4. Modification Techniques of Glass Fibers
4.1. Sizing
4.2. Organic Coatings
4.3. Inorganic Coatings
4.4. Comparison of Different Coatings
5. Conclusions
- In general the improvement of the load-bearing capacities of the composites by impregnation of the reinforcement with a polymeric coating is mainly due to the superior wettability of the polymer compared to the cementitious matrix, and its ability to fully penetrate in multi-filament yarns promoting a superior stress-transfer between the fibers.
- On the basis of the studies available it is not possible to state which polymeric coating provides the highest performance. In general, it has been observed that stiffer coatings like epoxy resins improve the composite tensile strength. However, epoxy impregnated reinforcements are also reported to have low flexibility, which can be a disadvantage when fabrics are meant to be used for the reinforcement of existing structures with complex geometry. Moreover, although a stiffer reinforcement can improve the tensile strength of the composite, flexible textiles performed better under flexural load. These parameters should be considered according to each specific use.
- For what it concerns the fiber-matrix interface, the interaction between polymeric coatings and inorganic matrices strongly depend on the chemical composition of the coating and can be improved by using the fresh to fresh methods or by incorporating inorganic particles, such as nanoclay, in the polymeric matrix. Since the first method is less feasible for strengthening interventions, it seems more suitable for the production of TRC elements rather than for FRCM applications. On the contrary, the second method can be used also for the production of pre-impregnated fabrics for the rehabilitation of existing structures.
- A stronger fiber-matrix interaction can be obtained by using inorganic coatings, which can chemically react with the cementitious matrix, providing a better adhesion at the fiber-to-matrix interface. However, a strong fiber-matrix interaction also results in a stiffer fiber-matrix interface, which could make the composite more brittle and lead to a reduction of the mechanical performance over time.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
FRCM | Fabric Reinforced Cementitious Matrix |
TRC | Textile Reinforced Concrete |
ARG | Alkali Resistant Glass |
ITZ | Interfacial Transition Zone |
APTES | -aminopropyltriethoxysilane |
GPTMS | -glycidoxypropyltrimethoxysilane |
MPTMS | -methacryloxypropyltrimethoxysilane |
VTES | vinyltriethoxysilane |
f/h | fresh to hard |
f/f | fresh to fresh |
AFM | Atomic Force Microscopy |
FTIR-ATR | Fourier-Transform Infrared-Attenuated Total Reflection |
SEM | Scanning Electron Microscope |
SEM-EDX | Scanning Electron Microscope - Energy-Dispersive X-ray |
TEOS | tetraethyl orthosilicate |
LOP | Limit Of Proportionality |
MFS | Maximum Flexural Strength |
References
- Martynova, E.; Cebulla, H. Chapter 7—Glass fibers. In Inorganic and Composite Fibers; Mahltig, B., Kyosev, Y., Eds.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2018; pp. 131–163. [Google Scholar]
- Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent Advances in Fiber/Matrix Interphase Engineering for Polymer Composites. Prog. Mater. Sci. 2015, 73, 1–43. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, D.; Jin, X.; Wang, C.; Wang, D.; Ge, H. Modifying glass fibers with graphene oxide: Towards high-performance polymer composites. Compos. Sci. Technol. 2014, 97, 41–45. [Google Scholar] [CrossRef]
- Luo, N.; Zhong, H.; Yang, M.; Yuan, X.; Fan, Y. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane. J. Environ. Sci. 2016, 39, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.L. Glass Fibre Sizing: A Review. Compos. Part A Appl. Sci. Manuf. 2019, 127. [Google Scholar] [CrossRef]
- Cech, V.; Prikryl, R.; Balkova, R.; Grycova, A.; Vanek, J. Plasma surface treatment and modification of glass fibers. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1367–1372. [Google Scholar] [CrossRef]
- Hund, H.; Hund, R.D. Textile finishing and finishing technologies. In Textile Materials for Lightweight Constructions: Technologies-Methods-Materials-Properties; Cherif, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 427–477. [Google Scholar]
- Bentur, A.; Mindess, S. Fiber Reinfroced Cementitious Composites, 2nd ed.; Taylor & Francis: Abingdon, UK, 2007. [Google Scholar]
- Kouris, L.A.S.; Triantafillou, T.C. State-of-the-Art on Strengthening of Masonry Structures with Textile Reinforced Mortar (TRM). Constr. Build. Mater. 2018, 188, 1221–1233. [Google Scholar] [CrossRef]
- Nanni, A. A New Tool for Concrete and Masonry Repair. Concr. Int. 2012, 34, 43–49. [Google Scholar]
- Koutas, L.N.; Tetta, Z.; Bournas, D.A.; Triantafillou, T.C. Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review. J. Compos. Constr. 2019, 23, 1–20. [Google Scholar] [CrossRef]
- Parisi, F.; Menna, C.; Prota, A. 10—Fabric-Reinforced Cementitious Matrix (FRCM) composites: Mechanical behavior and application to masonry walls. In Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2019; pp. 199–227. [Google Scholar]
- Bournas, D. 17—Strengthening of existing structures: Selected case studies. In Textile Fibre Composites in Civil Engineering; Triantafillou, T., Ed.; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Hegger, J.; Will, N.; Bentur, A.; Curbach, M.; Jesse, F.; Mobasher, B.; Peled, A.; Wastiels, J. Mechanical Behaviour of Textile Reinforced Concrete. Text. Reinf. Concr. State Rep. 2006, 36, 133–186. [Google Scholar]
- Papanicolaou, C. 10—Applications of textile-reinforced concrete in the precast industry. In Textile Fibre Composites in Civil Engineering; Triantafillou, T., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 227–244. [Google Scholar]
- Papanicolaou, C.G.; Triantafillou, T.C.; Karlos, K.; Papathanasiou, M. Textile-Reinforced Mortar (TRM) versus FRP as Strengthening Material of URM Walls: In-Plane Cyclic Loading. Mater. Struct. 2007, 40, 1081–1097. [Google Scholar] [CrossRef]
- Martins, A.; Vasconcelos, G.; Fangueiro, R.; Cunha, F. Experimental assessment of an innovative strengthening material for brick masonry infills. Compos. Part B Eng. 2015, 80, 328–342. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Deng, M.; Dong, Z.; Zhang, Y.; Zhang, C. Masonry columns confined with glass textile-reinforced high ductile concrete (TRHDC) jacket. Eng. Struct. 2020, 222, 111123. [Google Scholar] [CrossRef]
- Faleschini, F.; Zanini, M.A.; Hofer, L.; Toska, K.; De Domenico, D.; Pellegrino, C. Confinement of reinforced concrete columns with glass fiber reinforced cementitious matrix jackets. Eng. Struct. 2020, 218, 110847. [Google Scholar] [CrossRef]
- Garmendia, L.; San-José, J.; García, D.; Larrinaga, P. Rehabilitation of masonry arches with compatible advanced composite material. Masonry Research and Practice. Constr. Build. Mater. 2011, 25, 4374–4385. [Google Scholar] [CrossRef]
- De Caso y Basalo, F.J.; Matta, F.; Nanni, A. Fiber reinforced cement-based composite system for concrete confinement. Strengthening and Retrofitting of concrete structures with Fiber Reinforced polymer material. Constr. Build. Mater. 2012, 32, 55–65. [Google Scholar] [CrossRef]
- Gonzalez-Libreros, J.; Zanini, M.A.; Faleschini, F.; Pellegrino, C. Confinement of low-strength concrete with fiber reinforced cementitious matrix (FRCM) composites. Compos. Part B Eng. 2019, 177, 107407. [Google Scholar] [CrossRef]
- Reinhardt, H.W.; Krüger, M.; Bentur, A.; Brameshuber, W.; Banholzer, B.; Curbach, M.; Jesse, F.; Mambasher, B.; Peled, A.; Schorn, H. Composite materials—6.1 Bond. In Textile Reinforced Concrete—State-of-the-Art Report of RILEM TC 201-TRC; Brameshuber, W., Ed.; RILEM Publications SARL: Paris, France, 2006. [Google Scholar]
- Banholzer, B. Bond Behaviour of a Multi-Filament Yarn Embedded in a Cementitious Matrix; 1. Aufl. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2004. [Google Scholar]
- Wölfel, E.; Scheffler, C.; Curosu, I.; Mechtcherine, V. Single Fibre Pull-out Tests of Polypropylene and Glass Fibres in Cement-Based Matrices at High Loading Rates. In Proceedings of the ECCM 2018—18th European Conference on Composite Materials, Athens, Greece, 24–28 June 2020; pp. 24–28. [Google Scholar]
- Scheffler, C.; Förster, T.; Mäder, E.; Heinrich, G.; Hempel, S.; Mechtcherine, V. Aging of Alkali-Resistant Glass and Basalt Fibers in Alkaline Solutions: Evaluation of the Failure Stress by Weibull Distribution Function. J. Non Cryst. Solids 2009, 355, 2588–2595. [Google Scholar] [CrossRef]
- Bentur, A.; Mobasher, B.; Peled, A. Durability of TRC. In Textile Reinforced Concrete; Bentur, A., Mindess, S., Eds.; Number 19 in Modern Concrete Technology Series; Taylor & Francis Group: Abingdon, UK, 2017; pp. 365–420. [Google Scholar]
- Scheffler, C. Zur Beurteilunf von AR-Glasfasern in Alkalischer Umgebung. Ph.D. Thesis, Technischen Universität Dresden, Dresden, Germany, 2009. [Google Scholar]
- Butler, M.; Mechtcherine, V.; Hempel, S. Experimental Investigations on the Durability of Fibre-Matrix Interfaces in Textile-Reinforced Concrete. Cem. Concr. Compos. 2009, 31, 221–231. [Google Scholar] [CrossRef]
- Mechtcherine, V. Towards a Durability Framework for Structural Elements and Structures Made of or Strengthened with High-Performance Fibre-Reinforced Composites. Constr. Build. Mater. 2012, 31, 94–104. [Google Scholar] [CrossRef]
- Naaman, A. Textile reinforced cement composites: Competitive status and research directions. In Textile Reinforced Concrete—State-of-the-Art Report of RILEM TC 201-TRC; RILEM Publications SARL: Paris, France, 2010; pp. 3–22. [Google Scholar]
- Institute, A.C. (Ed.) Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures; Number 549.4R-13 in ACI; American Concrete Institute: Farmington Hills, MI, USA, 2013. [Google Scholar]
- Brameshub, W.; Brockmann, T.; Wastiels, J.; Curbach, M.; Meyer, C.; Vilkner, G.; Mobasher, B.; Peled, A.; Reinhardt, H.; Krüger, M. Concrete/Matrix. In Textile Reinforced Concrete—State-of-the-Art Report of RILEM TC 201-TRC; RILEM Publications SARL: Paris, France, 2006; pp. 29–56. [Google Scholar]
- Mechtcherine, V.; Schneider, K.; Brameshuber, W. 2–Mineral-based matrices for textile-reinforced concrete. In Textile Fibre Composites in Civil Engineering; Triantafillou, T., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 25–43. [Google Scholar]
- Alecci, V.; De Stefano, M.; Focacci, F.; Luciano, R.; Rovero, L.; Stipo, G. Strengthening Masonry Arches with Lime-Based Mortar Composite. Buildings 2017, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Aldea, C.; Gries, T.; Roye, A. Definitions. In Textile Reinforced Concrete—State-of-the-Art Report of RILEM TC 201-TRC; RILEM Publications SARL: Paris, France, 2006; pp. 5–9. [Google Scholar]
- Paul, A. Chemical Durability of Glasses; a Thermodynamic Approach. J. Mater. Sci. 1977, 12, 2246–2268. [Google Scholar] [CrossRef]
- Majumdar, A.J. The Role of the Interface in Glass Fibre Reinforced Cement. Cem. Concr. Res. 1974, 4, 247–268. [Google Scholar] [CrossRef]
- Stucke, M.S.; Majumdar, A.J. Microstructure of Glass Fibre-Reinforced Cement Composites. J. Mater. Sci. 1976, 11, 1019–1030. [Google Scholar] [CrossRef]
- Bentur, A. Role of Interfaces in Controlling Durability of Fiber-Reinforced Cements. J. Mater. Civ. Eng. 2000, 12, 2–7. [Google Scholar] [CrossRef]
- Butler, M.; Mechtcherine, V.; Hempel, S. Durability of Textile Reinforced Concrete Made with AR Glass Fibre: Effect of the Matrix Composition. Mater. Struct. Et Constr. 2010, 43, 1351–1368. [Google Scholar] [CrossRef]
- Zinck, P.; Pay, M.F.; Rezakhanlou, R.; Gerard, J.F. Mechanical Characterisation of Glass Fibres as an Indirect Analysis of the Effect of Surface Treatment. J. Mater. Sci. 1999, 34, 2121–2133. [Google Scholar] [CrossRef]
- Zinck, P.; Mäder, E.; Gerard, J.F. Role of Silane Coupling Agent and Polymeric Film Former for Tailoring Glass Fiber Sizings from Tensile Strength Measurements. J. Mater. Sci. 2001, 36, 5245–5252. [Google Scholar] [CrossRef]
- Gao, S.L.; Mäder, E.; Abdkader, A.; Offermann, P. Environmental Resistance and Mechanical Performance of Alkali-Resistant Glass Fibers with Surface Sizings. J. Non Cryst. Solids 2003, 325, 230–241. [Google Scholar] [CrossRef]
- Mäder, E.; Plonka, R.; Schiekel, M.; Hempel, R. Coatings on Alkali-Resistant Glass Fibres for the Improvement of Concrete. J. Ind. Text. 2004, 33, 191–207. [Google Scholar] [CrossRef]
- Igarashi, S.I.; Mitsunori, K. Effect of Sizing in Bundled Fibers on the Interfacial Zond Between the Fibers and the Cement Past Matrix. Cem. Concr. Res. 1994, 24, 695–703. [Google Scholar] [CrossRef]
- Scheffler, C.; Gao, S.L.; Plonka, R.; Mäder, E.; Hempel, S.; Butler, M.; Mechtcherine, V. Interphase Modification of Alkali-Resistant Glass Fibres and Carbon Fibres for Textile Reinforced Concrete II: Water Adsorption and Composite Interphases. Compos. Sci. Technol. 2009, 69, 905–912. [Google Scholar] [CrossRef]
- Shim, E. 10—Bonding requirements in coating and laminating of textiles. In Joining Textiles; Jones, I., Stylios, G., Eds.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2013; pp. 309–351. [Google Scholar]
- Joshi, M.; Butola, B. 14—Application technologies for coating, lamination and finishing of technical textiles. In Advances in the Dyeing and Finishing of Technical Textiles; Gulrajani, M., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2013; pp. 355–411. [Google Scholar]
- Portal, N.W. Usability of Textile Reinforced Concrete: Structural Performance, Durability and Sustainability. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2015. [Google Scholar]
- Messori, M.; Nobili, A.; Signorini, C.; Sola, A. Mechanical Performance of Epoxy Coated AR-Glass Fabric Textile Reinforced Mortar: Influence of Coating Thickness and Formulation. Compos. Part B Eng. 2018, 149, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Donnini, J.; Corinaldesi, V.; Nanni, A. Mechanical Properties of FRCM Using Carbon Fabrics with Different Coating Treatments. Compos. Part B Eng. 2016, 88. [Google Scholar] [CrossRef]
- Raupach, M.; Orlowsky, J.; Büttner, T.; Dilthey, U.; Schleser, M. Epoxy-Impregnated Textiles in Concrete. Load Bearing Capacity and Durability. In Proceedings of the ICTRC’2006—1st International RILEM Conference on Textile Reinforced Concret, Aachen, Germany, 6 September 2006; Hegger, J.W.B., Will, N., Eds.; RILEM Publications SARL: Paris, France, 2006; pp. 77–88. [Google Scholar]
- Schleser, M.; Walk-Lauffer, B.; Raupach, M.; Dilthey, U. Application of Polymers to Textile-Reinforced Concrete. J. Mater. Civ. Eng. 2006, 18, 670–676. [Google Scholar] [CrossRef]
- Signorini, C.; Nobili, A.; Sola, A.; Messori, M. Designing Epoxy Viscosity for Optimal Mechanical Performance of Coated Glass Textile Reinforced Mortar (GTRM) Composites. Constr. Build. Mater. 2020, 233, 117325. [Google Scholar] [CrossRef]
- Dilthey, U.; Schleser, M.; Möller, M.; Weichold, O. Application of Polymers in Textile Reinforced Concrete From the Interface to Construction Elements. In Proceedings of the ICTRC’2006—1st International RILEM Conference on Textile Reinforced Concret, Aachen, Germany, 6 September 2006; Hegger, J.W.B., Will, N., Eds.; RILEM Publications SARL: Paris, France, 2006; pp. 77–88. [Google Scholar]
- Hegger, J.; Voss, S. Investigations on the Bearing Behaviour and Application Potential of Textile Reinforced Concrete. Eng. Struct. 2008, 30, 2050–2056. [Google Scholar] [CrossRef]
- Sasi, E.A.; Peled, A. Three Dimensional (3D) Fabrics as Reinforcements for Cement-Based Composites. Compos. Part A Appl. Sci. Manuf. 2015, 74, 153–165. [Google Scholar] [CrossRef]
- Büttner, T.; Keil, A.; Raupach, M. Improvement of the Load- Bearing Capacity and Durability of Textile-Reinforced Concrete Due to the Use of Polymers. In Proceedings of the 15th Congress of the Glassfibre Reinforced Concrete Association International, Prague, Czech Republic, 20–23 April 2008; pp. 251–261. [Google Scholar]
- Yin, S.P.; Xu, S.L.; Wang, F. Investigation on the Flexural Behavior of Concrete Members Reinforced with Epoxy Resin-Impregnated Textiles. Mater. Struct. Constr. 2015, 48, 153–166. [Google Scholar] [CrossRef]
- Büttner, T.; Keil, A.; Orlowsky, J.; Raupach, M. Einsatz von Polymeren in Textilbeton—Entwicklung Polymermodifi- Zierter Betone Und Einflüsse Auf Die Dauerhaftigkeit. In Proceedings of the 4th Colloquium on Textile Reinforced Structures (CTRS4), Dresden, Germany, 3–5 June 2009; TU Dresden: Dresden, Germany, 2009; pp. 197–212. [Google Scholar]
- Büttner, T.; Raupach, M. Polymer Impregnation of Textile Reinforced Concrete to Enhance Durability—Laboratory Testing and Long-Term Modelling. Restor. Build. Monum. 2012, 18, 185–194. [Google Scholar] [CrossRef]
- Cohen, Z.; Peled, A. Effect of Nanofillers and Production Methods to Control the Interfacial Characteristics of Glass Bundles in Textile Fabric Cement-Based Composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 962–972. [Google Scholar] [CrossRef]
- Gao, S.L.; Mäder, E.; Plonka, R. Coatings for Glass Fibers in a Cementitious Matrix. Acta Mater. 2004, 52, 4745–4755. [Google Scholar] [CrossRef]
- Gao, S.L.; Mäder, E.; Plonka, R. Nanostructured Coatings of Glass Fibers: Improvement of Alkali Resistance and Mechanical Properties. Acta Mater. 2007, 55. [Google Scholar] [CrossRef]
- Scheffler, C.; Gao, S.L.; Plonka, R.; Mäder, E.; Hempel, S.; Butler, M.; Mechtcherine, V. Interphase Modification of Alkali-Resistant Glass Fibres and Carbon Fibres for Textile Reinforced Concrete I: Fibre Properties and Durability. Compos. Sci. Technol. 2009, 69, 531–538. [Google Scholar] [CrossRef]
- Hempel, S.; Butler, M.; Kratz, M.; Scheffler, C.; Plonka, R. Improvment of Bond Behaviour and Durability of AR-Glassfibre-Reinforced Concrete by Polymer-Fibre Coatings; Technische Universitat Dresden: Dresden, Germany, 2009; Volume 21, pp. 180–194. [Google Scholar]
- Donnini, J.; Y Basalo, F.D.C.; Corinaldesi, V.; Lancioni, G.; Nanni, A. Fabric-Reinforced Cementitious Matrix Behavior at High-Temperature: Experimental and Numerical Results. Compos. Part B Eng. 2017, 108. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.d.A.; Butler, M.; Hempel, S.; Toledo Filho, R.D.; Mechtcherine, V. Effects of Elevated Temperatures on the Interface Properties of Carbon Textile-Reinforced Concrete. Cem. Concr. Compos. 2014, 48, 26–34. [Google Scholar] [CrossRef]
- Homoro, O.; Michel, M.; Baranger, T.N. Improvement of the Mechanical Properties of a Glass Multifilament Yarn Reinforced Ettringitic Matrix Using an Innovative Pre-Impregnation Process. Eur. J. Environ. Civ. Eng. 2020, 1–16. [Google Scholar] [CrossRef]
- Quadflieg, T.; Leimbrink, S.; Gries, T.; Stolyarov, O. Effect of Coating Type on the Mechanical Performance of Warp-Knitted Fabrics and Cement-Based Composites. J. Compos. Mater. 2018, 52, 2563–2576. [Google Scholar] [CrossRef]
- Signorini, C.; Sola, A.; Nobili, A.; Siligardi, C. Lime-Cement Textile Reinforced Mortar (TRM) with Modified Interphase. J. Appl. Biomater. Funct. Mater. 2019, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Xiao, H.; Liu, M.; Li, X.; Li, H.; Sun, L. Improved Interfacial Strength of SiO2 Coated Carbon Fiber in Cement Matrix. Cem. Concr. Compos. 2018, 91, 21–28. [Google Scholar] [CrossRef]
- Nadiv, R.; Peled, A.; Mechtcherine, V.; Hempel, S.; Schroefl, C. Micro- and Nanoparticle Mineral Coating for Enhanced Properties of Carbon Multifilament Yarn Cement-Based Composites. Compos. Part B Eng. 2017, 111, 179–189. [Google Scholar] [CrossRef]
- Maida, P.D.; Radi, E.; Sciancalepore, C.; Bondioli, F. Pullout Behavior of Polypropylene Macro-Synthetic Fibers Treated with Nano-Silica. Constr. Build. Mater. 2015, 82, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Signorini, C.; Nobili, A.; González, E.I.C.; Siligardi, C. Silica Coating for Interphase Bond Enhancement of Carbon and AR-Glass Textile Reinforced Mortar (TRM). Compos. Part B Eng. 2018, 141, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Weichold, O.; Möller, M. A Cement-in-Poly(Vinyl Alcohol) Dispersion for Improved Fibre-Matrix Adhesion in Continuous Glass-Fibre Reinforced Concrete. Adv. Eng. Mater. 2007, 9, 712–715. [Google Scholar] [CrossRef]
- Schneider, K.; Michel, A.; Liebscher, M.; Terreri, L.; Hempel, S.; Mechtcherine, V. Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures. Cem. Concr. Compos. 2019, 97, 68–77. [Google Scholar] [CrossRef]
- Weichold, O. Preparation and properties of hybrid cement-in-polymer coatings used for the improvement of fiber-matrix adhesion in textile reinforced concrete. J. Appl. Polym. Sci. 2010, 116, 3303–3309. [Google Scholar] [CrossRef]
- Weichold, O. Advanced Coatings to Improve the Durability in Continuous Glass-Fibre Reinforced Concrete. Key Eng. Mater. 2011, 466, 175–182. [Google Scholar] [CrossRef]
- Rampini, M.C.; Zani, G.; Colombo, M.; di Prisco, M. Mechanical Behaviour of TRC Composites: Experimental and Analytical Approaches. Appl. Sci. 2019, 9, 1492. [Google Scholar] [CrossRef] [Green Version]
Modification Techniques | Stress Transfer | Interaction with the Matrix | Alkali-Resistance | Technology Readiness Level | Advantages | Drawbacks | |||
---|---|---|---|---|---|---|---|---|---|
Sizing | Limited | Good | Limited [26] | Standard procedure for the production of glass fibers | Easy to implement in production processes | Limited improvement of durability, stress transfer and textile handability | |||
Organic coating | Hardened coating (h/f) | Epoxy resin | Good to very good. Depending on the viscosity and solid content of the resin or polymeric dispersion [55] | Depends on chemical composition [14,45,47,51,64] | Improved [53] | Commercially available | High increase of the composite tensile strength [51,52,53,54,55,56,57,58,59,60] | Low flexibility: not adequate for reinforcement of structures with complex geometry | Low resistance to high temperatures [68,69] |
SB | Improved [64] | Increase of the composite tensile strength without loss of flexibility [71] | Lower increase of the fabric tensile strength compared with epoxy coating [81] | ||||||
Fresh coating (f/f) | Epoxy or SB | Very good [59,63] | Lower compared to h/f method [63] | Commercially available | Improved interaction with the matrix compared with h/f method [59] | Difficult to applay in FRCM systems | |||
SB-nanoclay coating | Very good [47,67] | Improved for nanostructured coating, otherwise reduced [65,67] | Laboratory scale | Improvement of the interaction between matrix and coating | Need implementation No infromation about resistance to high temperatures | ||||
Inorganic coating | Good to very good. Depending on the impregnation method | Very good | Improved by addition of silica [80] | Laboratory scale | Very good fiber-matrix interaction. Resistance to high temperature [78] | Need manufacturing implementation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bompadre, F.; Donnini, J. Surface Modification of Glass Textile for the Reinforcement of a Cement-Based Composite: A Review. Appl. Sci. 2021, 11, 2028. https://doi.org/10.3390/app11052028
Bompadre F, Donnini J. Surface Modification of Glass Textile for the Reinforcement of a Cement-Based Composite: A Review. Applied Sciences. 2021; 11(5):2028. https://doi.org/10.3390/app11052028
Chicago/Turabian StyleBompadre, Francesca, and Jacopo Donnini. 2021. "Surface Modification of Glass Textile for the Reinforcement of a Cement-Based Composite: A Review" Applied Sciences 11, no. 5: 2028. https://doi.org/10.3390/app11052028
APA StyleBompadre, F., & Donnini, J. (2021). Surface Modification of Glass Textile for the Reinforcement of a Cement-Based Composite: A Review. Applied Sciences, 11(5), 2028. https://doi.org/10.3390/app11052028