Least Squares Boosting Ensemble and Quantum-Behaved Particle Swarm Optimization for Predicting the Surface Roughness in Face Milling Process of Aluminum Material
Abstract
:1. Introduction
1.1. Face-Milling Mathematical Model
1.2. Objective Function
1.3. Constraints
2. Methodology
2.1. Particle Swarm Optimization Algorithm (PSO)
Algorithm 1 Classical PSO algorithm |
Step 1: Setting population size and random initialisation of particle positions and velocities. |
Step 2: Evaluation of particles fitness according to required objective function |
Step 3: Evaluation of personal best solution of each particle |
Step 4: Evaluation of global best solution |
Step 5: Velocity update |
Step 6: Position update |
Step 7: Repeat Steps 2–6 until termination criteria met. |
2.2. Quantum-Behaved Particle Swarm Optimization Algorithm (QPSO)
Algorithm 2 QPSO algorithm |
Step 1: Setting population size and random initialisation of particle positions and velocities. |
Step 2: Evaluation of particles fitness according to required objective function |
Step 3: Evaluation of personal best solution of each particle |
Step 4: Evaluation of global best solution |
Step 5: Calculating of Mean best (Mbest) of all the pbest of the population |
Step 6: Position update |
Step 7: Repeat Steps 2–6 until termination criteria met. |
2.3. Least Squares Boosting Ensemble (LSBoost)
Algorithm 3 LSBoost Algorithm |
Define
and as explainable variables and M as the number of iterations Define the training set , a loss function as and as the regression function. Initialization: For m = 1 to M do: for End |
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
minimum spindle speed (rpm) | |
maximum spindle speed (rpm) | |
minimum feed rate (mm/rev) | |
maximum feed rate (mm/rev) | |
minimum depth of cut (mm) | |
machining time (s) | |
surface roughness (μm) | |
length of the work piece (mm) | |
width of the work piece (mm) | |
maximum depth of cut (mm) |
References
- Mundada, V.; Narala, S.K.R. Optimization of Milling Operations Using Artificial Neural Networks (ANN) and Simulated Annealing Algorithm (SAA). Mater. Today Proc. 2018, 5, 4971–4985. [Google Scholar] [CrossRef]
- Raja, S.B.; Baskar, N. Application of Particle Swarm Optimization technique for achieving desired milled surface roughness in minimum machining time. Expert Syst. Appl. 2012, 39, 5982–5989. [Google Scholar] [CrossRef]
- Rao, R.V.; Rai, D.P.; Balic, J. A multi-objective algorithm for optimization of modern machining processes. Eng. Appl. Artif. Intell. 2017, 61, 103–125. [Google Scholar] [CrossRef]
- Chua, M.S.; Loh, H.T.; Wong, Y.S.; Rahman, M. Optimization of cutting conditions for multi-pass turning operations using sequential quadratic programming. J. Mater. Process. Technol. 1991, 28, 253–262. [Google Scholar] [CrossRef]
- Al-Ahmari, A.M.A. Mathematical model for determining machining parameters in multipass turning operations with con-straints. Int. J. Prod. Res. 2001, 39, 3367–3376. [Google Scholar] [CrossRef]
- Lee, B.; Tarng, Y. Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations. J. Mater. Process. Technol. 2000, 105, 61–66. [Google Scholar] [CrossRef]
- Sundaram, R.M. An application of goal programming technique in metal cutting. Int. J. Prod. Res. 1978, 16, 375–382. [Google Scholar] [CrossRef]
- Manna, A.; Salodkar, S. Optimization of machining conditions for effective turning of E0300 alloy steel. J. Mater. Process. Technol. 2008, 203, 147–153. [Google Scholar] [CrossRef]
- Senthilkumaar, J.S.; Selvarani, P.; Arunachalam, R.M. Intelligent optimization and selection of machining parameters in finish turning and facing of Inconel 718. Int. J. Adv. Manuf. Technol. 2011, 58, 885–894. [Google Scholar] [CrossRef]
- Saravanan, R.; Asokan, P.; Sachidanandam, M. A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations. Int. J. Mach. Tools Manuf. 2002, 42, 1327–1334. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Tang, Y.; Li, L. Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost. J. Clean. Prod. 2017, 140, 1805–1818. [Google Scholar] [CrossRef]
- Yıldız, A.R. A novel particle swarm optimization approach for product design and manufacturing. Int. J. Adv. Manuf. Technol. 2008, 40, 617–628. [Google Scholar] [CrossRef]
- Krishna, A.G.; Rao, K.M. Optimisation of machining parameters for milling operations using a scatter search approach. Int. J. Adv. Manuf. Technol. 2006, 31, 219–224. [Google Scholar] [CrossRef]
- Nasiri, M.M.; Kianfar, F. A hybrid scatter search for the partial job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2010, 52, 1031–1038. [Google Scholar] [CrossRef]
- Liu, X.-J.; Yi, H.; Ni, Z.-H. Application of ant colony optimization algorithm in process planning optimization. J. Intell. Manuf. 2010, 24, 1–13. [Google Scholar] [CrossRef]
- Li, P.; Zhu, H. Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm. Math. Probl. Eng. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Vundavilli, P.R.; Parappagoudar, M.; Kodali, S.; Benguluri, S. Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowl. Based Syst. 2012, 27, 456–464. [Google Scholar] [CrossRef]
- Rana, P.; Lalwani, D. Parameters optimization of surface grinding process using Modified ε constrained Differential Evolution. Mater. Today Proc. 2017, 4, 10104–10108. [Google Scholar] [CrossRef]
- Yildiz, A.R. Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl. Soft Comput. 2013, 13, 1433–1439. [Google Scholar] [CrossRef]
- Rao, R.V.; Rai, D.P.; Balic, J. Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm. J. Intell. Manuf. 2016, 29, 1715–1737. [Google Scholar] [CrossRef]
- Rao, R.V.; Rai, D.P.; Balic, J.; Balič, J. Optimization of Abrasive Waterjet Machining Process using Multi-objective Jaya Algorithm. Mater. Today Proc. 2018, 5, 4930–4938. [Google Scholar] [CrossRef]
- Alajmi, M.S.; Alfares, F.S.; Alfares, M.S. Selection of optimal conditions in the surface grinding process using the quantum based optimisation method. J. Intell. Manuf. 2017, 30, 1469–1481. [Google Scholar] [CrossRef]
- Yildiz, A.R.; Solanki, K.N. Multi-objective optimization of vehicle crashworthiness using a new particle swarm based ap-proach. Int. J. Adv. Manuf. Technol. 2012, 59, 367–376. [Google Scholar] [CrossRef]
- Baraheni, M.; Amini, S. Comprehensive optimization of process parameters in rotary ultrasonic drilling of CFRP aimed at minimizing delamination. Int. J. Light. Mater. Manuf. 2019, 2, 379–387. [Google Scholar] [CrossRef]
- Bustillo, A.; Urbikain, G.; Perez, J.M.; Pereira, O.M.; Lopez de Lacalle, L.N. Smart optimization of a friction-drilling process based on boosting ensembles. J. Manuf. Syst. 2018, 48, 108–121. [Google Scholar] [CrossRef]
- Sanchez, J.A.; López de Lacalle, L.N.; Lamikiz, A. A computer-aided system for the optimization of the accuracy of the wire electro-discharge machining process. Int. J. Comput. Integr. Manuf. 2004, 17, 413–420. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; IEEE: New York, NY, USA, 1995; pp. 39–43. [Google Scholar]
- Rashmi, L.M.; Karthik, R.M.C.; Arunkumar, S.; Shrikantha, S.R.; Herbert, M.A. Machining parameters optimization of AA6061 using response surface methodology and particle swarm optimization. Int. J. Precssion Eng. Manuf. 2018, 19, 670–695. [Google Scholar]
- Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 2015, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Dong, J.S.; Lewis, A.; Sadiq, A.S. Particle Swarm Optimization: Theory, Literature Review, and Application in Airfoil Design. Stud. Comput. Intell. 2020, 167–184. [Google Scholar] [CrossRef]
- Şenel, F.A.; Gökçe, F.; Yüksel, A.S.; Yiğit, T. A novel hybrid PSO–GWO algorithm for optimization problems. Eng. Comput. 2019, 35, 1359–1373. [Google Scholar] [CrossRef]
- Imran, M.; Hashim, R.; Khalid, N.E.A. An Overview of Particle Swarm Optimization Variants. Procedia Eng. 2013, 53, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Liu, Y.; Grosvenor, R.; Lacan, F.; Jiang, Z. Deep learning-driven particle swarm optimisation for additive manufacturing energy optimisation. J. Clean. Prod. 2020, 245, 118702. [Google Scholar] [CrossRef]
- Raju, M.; Gupta, M.K.; Bhanot, N.; Sharma, V.S. A hybrid PSO–BFO evolutionary algorithm for optimization of fused depo-sition modelling process parameters. J. Intell. Manuf. 2019, 30, 2743–2758. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 19–23 June 2004; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2004; pp. 325–331. [Google Scholar]
- Sun, J.; Fang, W.; Wu, X.; Palade, V.; Xu, W. Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection. Evol. Comput. 2012, 20, 349–393. [Google Scholar] [CrossRef]
- Xi, M.; Sun, J.; Xu, W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best po-sition. Appl. Math. Comput. 2008, 205, 751–759. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 1189–1232. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998; IEEE: New York, NY, USA, 2002; pp. 69–73. [Google Scholar]
- Boeringer, D.W.; Werner, D.H. Particle Swarm Optimization Versus Genetic Algorithms for Phased Array Synthesis. IEEE Trans. Antennas Propag. 2004, 52, 771–779. [Google Scholar] [CrossRef]
Parameter | Minimum Value | Maximum Value |
---|---|---|
v | 1000 rpm | 3000 rpm |
f | 180 mm/min | 300 mm/min |
a | 0.2 mm | 0.6 mm |
Parameter | Value |
---|---|
Iterations | 1000 |
Particles population | 100 |
Cognitive acceleration: c1 | 2 |
Social coefficient: c2 | 2 |
Contraction expansion factor: β | 0.8 |
Parameter | Value |
---|---|
Number of learners | 50 |
Learning rate | 0.01 |
Minimum leaf size | 1 |
Parameter | Value |
---|---|
Iterations | 1000 |
Particles population | 100 |
Cognitive acceleration: c1 | 2 |
Social coefficient: c2 | 2 |
Parameter | Value |
---|---|
Maximum number of generation | 100 |
Number of individuals per generation | 25 |
Generation gap | 0.5 |
Crossover | 0.7 |
Mutation rate | 0.04 |
Exp No. | f (mm/min) | a (mm) | t (s) | v (rpm) | Ra (μm) | QPSO | LSBOOST | PSO | GA |
---|---|---|---|---|---|---|---|---|---|
“1 | 196.37 | 0.22 | 37 | 1672.72 | 0.18 | 0.19 | 0.19 | 0.23 | 0.19 |
2 | 238.15 | 0.22 | 31 | 1861.34 | 0.19 | 0.22 | 0.22 | 0.24 | 0.19 |
3 | 233.31 | 0.23 | 31 | 1307.27 | 0.23 | 0.22 | 0.26 | 0.27 | 0.25 |
4 | 236.51 | 0.43 | 31 | 1832.82 | 0.26 | 0.24 | 0.28 | 0.29 | 0.27 |
5 | 272.41 | 0.41 | 27 | 1982.63 | 0.28 | 0.30 | 0.29 | 0.32 | 0.29 |
6 | 260.54 | 0.34 | 28 | 1120.73 | 0.32 | 0.38 | 0.34 | 0.33 | 0.35 |
7 | 285.91 | 0.42 | 25 | 1405.22 | 0.35 | 0.34 | 0.36 | 0.33 | 0.39 |
8 | 275.87 | 0.28 | 26 | 3136.03 | 0.39 | 0.41 | 0.40 | 0.42 | 0.41 |
9 | 271.22 | 0.29 | 27 | 2922.42 | 0.41 | 0.41 | 0.40 | 0.40 | 0.43 |
10 | 238.58 | 0.48 | 30 | 1937.49 | 0.28 | 0.29 | 0.29 | 0.29 | 0.30 |
11 | 265.79 | 0.35 | 27 | 1701.76 | 0.27 | 0.32 | 0.30 | 0.33 | 0.29 |
12 | 262.26 | 0.47 | 28 | 1431.97 | 0.35 | 0.34 | 0.28 | 0.29 | 0.36 |
13 | 272.17 | 0.42 | 27 | 1769.6 | 0.29 | 0.30 | 0.30 | 0.29 | 0.32 |
14 | 293.61 | 0.26 | 25 | 2918.53 | 0.4 | 0.44 | 0.47 | 0.42 | 0.47 |
15 | 271.16 | 0.34 | 27 | 2437.62 | 0.49 | 0.49 | 0.47 | 0.44 | 0.54 |
16 | 242.95 | 0.51 | 30 | 1155.68 | 0.38 | 0.43 | 0.34 | 0.34 | 0.44 |
17 | 276.5 | 0.57 | 26 | 3767.02 | 0.52 | 0.48 | 0.57 | 0.46 | 0.57 |
18 | 284.65 | 0.53 | 26 | 2498.64 | 0.62 | 0.63 | 0.57 | 0.48 | 0.71 |
19 | 276.15 | 0.25 | 26 | 1874.84 | 0.23 | 0.24 | 0.23 | 0.29 | 0.26 |
20 | 289.18 | 0.5 | 25 | 1963.66 | 0.3 | 0.31 | 0.39 | 0.31 | 0.19 |
21 | 269.94 | 0.31 | 27 | 1156 | 0.32 | 0.32 | 0.29 | 0.28 | 0.19 |
22 | 245.47 | 0.3 | 30 | 1793.12 | 0.24 | 0.24 | 0.28 | 0.30 | 0.24 |
23 | 250.2 | 0.25 | 30 | 3321.12 | 0.36 | 0.35 | 0.36 | 0.39 | 0.29 |
24 | 244.37 | 0.39 | 31 | 3622.61 | 0.4 | 0.39 | 0.45 | 0.43 | 0.30 |
25 | 283.94 | 0.33 | 26 | 3716.77 | 0.41 | 0.40 | 0.42 | 0.43 | 0.47 |
26 | 271.17 | 0.42 | 27 | 3791.69 | 0.46 | 0.45 | 0.44 | 0.45 | 0.46 |
27 | 292.13 | 0.5 | 25 | 2913.97 | 0.58 | 0.57 | 0.49 | 0.48 | 0.63 |
28 | 263.87 | 0.2 | 28 | 1920.2 | 0.21 | 0.22 | 0.23 | 0.25 | 0.23 |
29 | 257.63 | 0.37 | 29 | 1824.02 | 0.27 | 0.26 | 0.29 | 0.32 | 0.30 |
30 | 256.73 | 0.24 | 29 | 3542.53 | 0.33 | 0.35 | 0.38 | 0.39 | 0.38 |
31 | 236.84 | 0.21 | 31 | 3622.95 | 0.3 | 0.29 | 0.31 | 0.38 | 0.30 |
32 | 256.7 | 0.31 | 29 | 3189.63 | 0.39 | 0.38 | 0.37 | 0.37 | 0.45 |
33 | 238.91 | 0.33 | 30 | 3936.37 | 0.36 | 0.35 | 0.37 | 0.39 | 0.37 |
34 | 241.7 | 0.25 | 31 | 2869.59 | 0.37 | 0.36 | 0.35 | 0.39 | 0.38 |
35 | 267.45 | 0.33 | 27 | 3263.39 | 0.42 | 0.41 | 0.39 | 0.41 | 0.46 |
36” | 266.6 | 0.35 | 28 | 2559.31 | 0.48 | 0.54 | 0.43 | 0.44 | 0.49 |
QPSO | LSBOOST | PSO | GA | |
---|---|---|---|---|
MAPE | 5.03120722 | 9.11473319 | 12.1995498 | 10.7931852 |
MAE | 1.59% | 2.92% | 3.94% | 3.83% |
RMSE | 2.17% | 3.74% | 4.99% | 4.86% |
CVRMSE | 20.8152239 | 35.8338906 | 46.5072357 | 47.7823492 |
R2 | 0.95 | 0.88 | 0.84 | 0.871 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alajmi, M.S.; Almeshal, A.M. Least Squares Boosting Ensemble and Quantum-Behaved Particle Swarm Optimization for Predicting the Surface Roughness in Face Milling Process of Aluminum Material. Appl. Sci. 2021, 11, 2126. https://doi.org/10.3390/app11052126
Alajmi MS, Almeshal AM. Least Squares Boosting Ensemble and Quantum-Behaved Particle Swarm Optimization for Predicting the Surface Roughness in Face Milling Process of Aluminum Material. Applied Sciences. 2021; 11(5):2126. https://doi.org/10.3390/app11052126
Chicago/Turabian StyleAlajmi, Mahdi S., and Abdullah M. Almeshal. 2021. "Least Squares Boosting Ensemble and Quantum-Behaved Particle Swarm Optimization for Predicting the Surface Roughness in Face Milling Process of Aluminum Material" Applied Sciences 11, no. 5: 2126. https://doi.org/10.3390/app11052126
APA StyleAlajmi, M. S., & Almeshal, A. M. (2021). Least Squares Boosting Ensemble and Quantum-Behaved Particle Swarm Optimization for Predicting the Surface Roughness in Face Milling Process of Aluminum Material. Applied Sciences, 11(5), 2126. https://doi.org/10.3390/app11052126