Intra Prediction-Based Hologram Phase Component Coding Using Modified Phase Unwrapping
Abstract
:1. Introduction
2. Phase Information of Full-Complex Hologram
2.1. Effect of Phase
2.2. Phase Unwrapping
3. Phase Compression
3.1. Structure of Codec
3.2. Intra Prediction with Unwrapping
4. Experiment and Result
4.1. Environment
4.2. Unwrapping Result
4.3. Coding Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, P. Basics of Holography; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Osten, W.; Faridian, A.; Gao, P.; Körner, K.; Naik, D.; Pedrini, G.; Singh, A.K.; Takeda, M.; Wilke, M. Recent advances in digital holography [Invited]. Appl. Opt. 2014, 53, G44–G63. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H. Digital holographic signal processing. In Proceedings of the TAO First International Symposium on Three Dimensional Image Communication Technologies, Tokyo, Japan, 6–7 December 1993; pp. S–4–2. [Google Scholar]
- JPEG Pleno. Available online: https://jpeg.org/jpegpleno/ (accessed on 1 January 2021).
- Naughton, T.J.; Frauel, Y.; Javidi, B.; Tajahuerce, E. Compression of digital holograms for three-dimensional object reconstruction and recognition. Appl. Opt. 2002, 41, 4124–4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naughton, T.J.; Frauel, Y.; Matoba, O.; Bertaux, N.; Tajahuerce, E.; Javidi, B. Three-dimensional imaging, compression, and reconstruction of digital holograms. In Opto-Ireland 2002: Optical Metrology, Imaging, and Machine Vision; Shearer, A., Murtagh, F.D., Mahon, J., Whelan, P.F., Eds.; International Society for Optics and Photonics, SPIE: Bellingham WA, USA, 2003; Volume 4877, pp. 104–114. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Sasaki, K. Image scaling for electroholographic display. In Practical Holography VIII; Benton, S.A., Ed.; International Society for Optics and Photonics, SPIE: Bellingham WA, USA, 1994; Volume 2176, pp. 12–22. [Google Scholar] [CrossRef]
- Cheremkhin, P.A.; Kurbatova, E.A. Numerical comparison of scalar and vector methods of digital hologram compression. In Holography, Diffractive Optics, and Applications VII; Sheng, Y., Yu, C., Zhou, C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham WA, USA, 2016; Volume 10022, pp. 455–464. [Google Scholar] [CrossRef]
- Ahar, A.; Blinder, D.; Bruylants, R.; Schretter, C.; Munteanu, A.; Schelkens, P. Subjective quality assessment of numerically reconstructed compressed holograms. Proc. SPIE 2015, 95990K, 1–15. [Google Scholar]
- Peixeiro, J.; Brites, C.; Ascenso, J.; Pereira, F. Digital holography: Benchmarking coding standards and representation formats. In Proceedings of the 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Peixeiro, J.P.; Brites, C.; Ascenso, J.; Pereira, F. Holographic Data Coding: Benchmarking and Extending HEVC With Adapted Transforms. IEEE Trans. Multimed. 2018, 20, 282–297. [Google Scholar] [CrossRef]
- Darakis, E.; Soraghan, J.J. Use of Fresnelets for Phase-Shifting Digital Hologram Compression. IEEE Trans. Image Process. 2006, 15, 3804–3811. [Google Scholar] [CrossRef] [PubMed]
- Darakis, E.; Soraghan, J.J. Reconstruction domain compression of phase-shifting digital holograms. Appl. Opt. 2007, 46, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Darakis, E.; Naughton, T.J.; Soraghan, J.J. Compression defects in different reconstructions from phase-shifting digital holographic data. Appl. Opt. 2007, 46, 4579–4586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, J.Y. Digital Hologram Compression Using Correlation of Reconstructed Object Images. In Advances in Image and Video Technology; Ho, Y.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 204–214. [Google Scholar]
- Abdul-Rahman, H.S.; Gdeisat, M.A.; Burton, D.R.; Lalor, M.J.; Lilley, F.; Moore, C.J. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl. Opt. 2007, 46, 6623–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo, M.V.; Fernandes, P.; Arrifano, A.; Antonini, M.; Fonseca, E.; Fiadeiro, P.T.; Pinheiro, A.M.; Pereira, M. Holographic representation: Hologram plane vs. object plane. Signal Process. Image Commun. 2018, 68, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Lainema, J.; Bossen, F.; Han, W.; Min, J.; Ugur, K. Intra Coding of the HEVC Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1792–1801. [Google Scholar] [CrossRef]
- Gilles, A.; Gioia, P.; Cozot, R.; Morin, L. Computer generated hologram from Multiview-plus-Depth data considering specular reflections. In Proceedings of the 2016 IEEE International Conference on Multimedia Expo Workshops (ICMEW), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gilles, A.; Gioia, P.; Cozot, R.; Morin, L. Hybrid approach for fast occlusion processing in computer-generated hologram calculation. Appl. Opt. 2016, 55, 5459–5470. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, G.; Sharma, A.; Debnath, S. Comparison of numerical reconstruction of digital holograms using angular spectrum method and Fresnel diffraction method. J. Opt. 2017. [Google Scholar] [CrossRef]
PSNR (dB) | SSIM | ||||
---|---|---|---|---|---|
Real | Imaginary | Complex | Phase | Reconstruction | |
27.43 | 25.27 | 26.35 | 16.39 | 23.29 | 0.82 |
31.43 | 27.18 | 29.31 | 17.11 | 26.43 | 0.90 |
31.71 | 31.71 | 31.71 | 16.99 | 26.83 | 0.91 |
31.78 | 31.29 | 31.54 | 16.68 | 25.81 | 0.87 |
Segment Size | CU Size | Dynamic Range of Unwrapping | Codec |
---|---|---|---|
64 | , , , | HEVC Intra, JPEG2000 | |
32 | |||
16 | |||
32 | |||
16 | |||
16 |
Computation Time [s] | |||
---|---|---|---|
10:1 | 50:1 | 100:1 | |
JPEG2000 | 1.55 | 1.12 | 0.99 |
HEVC Intra | 30.28 | 25.32 | 21.98 |
Ours | 16.21 | 15.54 | 15.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-K.; Oh, K.-J.; Kim, J.-W.; Kim, D.-W.; Seo, Y.-H. Intra Prediction-Based Hologram Phase Component Coding Using Modified Phase Unwrapping. Appl. Sci. 2021, 11, 2194. https://doi.org/10.3390/app11052194
Kim J-K, Oh K-J, Kim J-W, Kim D-W, Seo Y-H. Intra Prediction-Based Hologram Phase Component Coding Using Modified Phase Unwrapping. Applied Sciences. 2021; 11(5):2194. https://doi.org/10.3390/app11052194
Chicago/Turabian StyleKim, Jin-Kyum, Kwan-Jung Oh, Jin-Woong Kim, Dong-Wook Kim, and Young-Ho Seo. 2021. "Intra Prediction-Based Hologram Phase Component Coding Using Modified Phase Unwrapping" Applied Sciences 11, no. 5: 2194. https://doi.org/10.3390/app11052194
APA StyleKim, J. -K., Oh, K. -J., Kim, J. -W., Kim, D. -W., & Seo, Y. -H. (2021). Intra Prediction-Based Hologram Phase Component Coding Using Modified Phase Unwrapping. Applied Sciences, 11(5), 2194. https://doi.org/10.3390/app11052194