Rain Streak Removal for Single Images Using Conditional Generative Adversarial Networks
Abstract
:1. Introduction
- Propose a conditional, GAN-based deep learning architecture to remove rain streaks from images by adapting U-Net architecture-based CNN for single image de-raining.
- Develop a classifier to identify whether the generated image is real or fake based on intra-convolutional “PatchGAN” architecture.
- Due to the lack of access to the ground truth of rainy images, we present a new dataset synthesizing rainy images using real-world clean images, which are used as the ground truth counterpart in this research.
2. Related Work
2.1. Single Image-based Methods
2.2. Video-based Methods
2.3. Deep Learning based Methods
2.4. Generative Adversarial Networks
3. Proposed Model
Model Overview
- Generator Network
- Discriminator Network
4. Experimental Details
4.1. Dataset
4.2. Evaluation Matrix and Results
4.3. Parameter Settings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnum, P.C.; Narasimhan, S.; Kanade, T. Analysis of Rain and Snow in Frequency Space. Int. J. Comput. Vis. 2009, 86, 256–274. [Google Scholar] [CrossRef]
- Brewer, N.; Liu, N. Using the Shape Characteristics of Rain to Identify and Remove Rain from Video. In Constructive Side-Channel Analysis and Secure Design; Springer: Berlin/Heidelberg, Germany, 2008; pp. 451–458. [Google Scholar]
- Chen, Y.-L.; Hsu, C.-T. A Generalized Low-Rank Appearance Model for Spatio-temporally Correlated Rain Streaks. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1968–1975. [Google Scholar]
- Kang, L.-W.; Lin, C.-W.; Fu, Y.-H. Automatic Single-Image-Based Rain Streaks Removal via Image Decomposition. IEEE Trans. Image Process. 2012, 21, 1742–1755. [Google Scholar] [CrossRef]
- Huang, D.-A.; Kang, L.-W.; Wang, Y.-C.F.; Lin, C.-W. Self-Learning Based Image Decomposition with Applications to Single Image Denoising. IEEE Trans. Multimedia 2013, 16, 83–93. [Google Scholar] [CrossRef]
- Sun, S.-H.; Fan, S.-P.; Wang, Y.-C.F. Exploiting image structural similarity for single image rain removal. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 28 October 2014; pp. 4482–4486. [Google Scholar]
- Yang, W.; Tan, R.T.; Feng, J.; Liu, J.; Guo, Z.; Yan, S. Deep Joint Rain Detection and Removal from a Single Image. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1685–1694. [Google Scholar]
- Fu, X.; Huang, J.; Zeng, D.; Huang, Y.; Ding, X.; Paisley, J. Removing Rain from Single Images via a Deep Detail Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1715–1723. [Google Scholar]
- Zhang, X.; Li, H.; Qi, Y.; Leow, W.K.; Ng, T.K. Rain Removal in Video by Combining Temporal and Chromatic Properties. In Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, Toronto, Canada, 9–12 July 2006; pp. 461–464. [Google Scholar]
- Liu, P.; Xu, J.; Liu, J.; Tang, X. Pixel Based Temporal Analysis Using Chromatic Property for Removing Rain from Videos. Comput. Inf. Sci. 2009, 2, 53. [Google Scholar] [CrossRef]
- Eigen, D.; Krishnan, D.; Fergus, R. Restoring an Image Taken through a Window Covered with Dirt or Rain. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 633–640. [Google Scholar]
- Chen, J.; Tan, C.-H.; Hou, J.; Chau, L.-P.; Li, H. Robust Video Content Alignment and Compensation for Rain Removal in a CNN Framework. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6286–6295. [Google Scholar]
- Fu, X.; Huang, J.; Ding, X.; Liao, Y.; Paisley, J. Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal. IEEE Trans. Image Process. 2017, 26, 2944–2956. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Fu, X.; Liang, B.; Huang, Y.; Ding, X.; Paisley, J. Lightweight pyramid networks for image deraining. arXiv 2019, arXiv:1805.06173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tan, R.T.; Guo, X.; Lu, J.; Brown, M.S. Rain Streak Removal Using Layer Priors. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2736–2744. [Google Scholar]
- Chang, Y.; Yan, L.; Zhong, S. Transformed Low-Rank Model for Line Pattern Noise Removal. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1735–1743. [Google Scholar]
- Luo, Y.; Xu, Y.; Ji, H. Removing Rain from a Single Image via Discriminative Sparse Coding. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3397–3405. [Google Scholar]
- Kim, J.H.; Lee, C.; Sim, J.Y.; Kim, C.S. Single-image de-raining using an adaptive nonlocal means filter. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 914–917. [Google Scholar]
- Zhu, L.; Fu, C.-W.; Lischinski, D.; Heng, P.-A. Joint Bi-layer Optimization for Single-Image Rain Streak Removal. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2545–2553. [Google Scholar]
- Bossu, J.; Hautière, N.; Tarel, J.-P. Rain or Snow Detection in Image Sequences through Use of a Histogram of Orientation of Streaks. Int. J. Comput. Vis. 2011, 93, 348–367. [Google Scholar] [CrossRef]
- Kim, J.H.; Sim, J.Y.; Kim, C.S. Video de-raining and desnowing using temporal correlation and low-rank matrix completion. IEEE Trans. Image Process. 2015, 24, 2658–2670. [Google Scholar] [CrossRef]
- Ren, W.; Tian, J.; Han, Z.; Chan, A.; Tang, Y. Video desnowing and de-raining based on matrix decomposition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4210–4219. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 125–138. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Hou, W.; Gao, X.; Tao, D.; Li, X. Blind Image Quality Assessment via Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1275–1286. [Google Scholar] [CrossRef]
- Nawaratne, R.; Kahawala, S.; Nguyen, S.; De Silva, D. A Generative Latent Space Approach for Real-time Road Surveillance in Smart Cities. IEEE Trans. Ind. Inform. 2020, 1, 1. [Google Scholar] [CrossRef]
- Nawaratne, R.; Alahakoon, D.; De Silva, D.; Yu, X. Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance. IEEE Trans. Ind. Inform. 2020, 16, 393–402. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W.; Yang, S.; Guo, Z. Erase or Fill? Deep Joint Recurrent Rain Removal and Reconstruction in Videos. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3233–3242. [Google Scholar]
- Fan, Z.; Wu, H.; Fu, X.; Hunag, Y.; Ding, X. Residual-guide feature fusion network for single image de-raining. arXiv 2018, arXiv:1804.07493. [Google Scholar]
- Xu, W.; Souly, N.; Brahma, P.P. Reliability of GAN Generated Data to Train and Validate Perception Systems for Autonomous Vehicles. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Online Conference. 9 January 2021; pp. 171–180. [Google Scholar]
- Saha, S.; Sheikh, N. Ultrasound Image Classification using ACGAN with Small Training Dataset. arXiv 2021, arXiv:2102.01539. [Google Scholar]
- Roy, S.; Sangineto, E.; Sebe, N.; Demir, B. Semantic-fusion gans for semi-supervised satellite image clas-sification. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 684–688. [Google Scholar]
- Cohen, J.; Rosenfeld, E.; Kolter, Z. Certified adversarial robustness via randomized smoothing. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 1310–1320. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5892–5900. [Google Scholar]
- Roy, S.; Siarohin, A.; Sangineto, E.; Sebe, N.; Ricci, E. TriGAN: Image-to-image translation for multi-source domain adaptation. Mach. Vis. Appl. 2021, 32, 1–12. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–10 February 2017; pp. 2852–2858. [Google Scholar]
- Hu, W.; Tan, Y. Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN. Available online: https://arxiv.org/abs/1702.05983 (accessed on 11 December 2020).
- Hwang, J.-J.; Azernikov, S.; Efros, A.A.; Yu, S.X. Learning beyond human expertise with generative models for dental restorations. arXiv 2018, arXiv:1804.00064. [Google Scholar]
- Hinton, E.G.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Li, C.; Wand, M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. In Proceedings of the 14th European Conference on Computer Vision (ECCV) Amsterdam, The Netherlands, 11–14 October 2016; pp. 702–716. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Zheng, X. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Arya, D.; Maeda, H.; Ghosh, S.K.; Toshniwal, D.; Mraz, A.; Kashiyama, T.; Sekimoto, Y. Transfer learning-based road damage detection for multiple countries. arXiv 2020, arXiv:2008.13101. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da, K. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Generator Architecture |
---|
Input(256 × 256), Num_c = 3 |
Downsampling: 4 × 4 Convolution + BN + ReLu, Output: 128 × 128, Num_c: 64 |
Downsampling 4 × 4 Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128 |
Downsampling 4 × 4 Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128 |
Downsampling: 4 × 4 Convolution + BN + ReLu, Output: 32 × 32, Num_c: 256 |
Downsampling: 4 × 4 Convolution + BN + ReLu, Output: 16 × 16, Num_c: 512 |
Downsampling 4 × 4 Convolution + BN + ReLu, Output: 128 × 128, Num_c: 512 |
Downsampling 4 × 4 Convolution + BN + ReLu, Output: 8×8, Num_c: 512 |
Downsampling 4 × 4 Convolution + BN + ReLu, Output: 4 × 4, Num_c: 512 |
Downsampling 4 × 4 Convolution + BN + ReLu, Output: 2 × 2, Num_c: 512 |
Downsampling 4 × 4 Convolution + BN + ReLu, Output: 1 × 1, Num_c: 512 |
Upsampling 4 × 4 Convolution + BN + ReLu, Output: 2 × 2, Num_c: 512 |
Concatenation: Input (2×2×512), (2 × 2 × 512), Output (2 × 2 × 1024) |
Upsampling 4 × 4 Convolution + BN + ReLu, Output: 4 × 4, Num_c: 512 |
Concatenation: Input (4 × 4 × 512), (4 × 4 × 512), Output (4 × 4 × 1024) |
Upsampling 4 × 4 Convolution + BN + ReLu, Output: 8 × 8, Num_c: 512 |
Concatenation: Input (8×8×512), (8×8×512), Output (8 × 8 × 1024) |
Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 16 × 16, Num_c: 512 |
Concatenation: Input (16 × 16 × 512), (16 × 16 × 512), Output (16 × 16 × 1024) |
Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 32 × 32, Num_c: 256 |
Concatenation: Input (32 × 32 × 256), (32 × 32 × 256), Output (32 × 32 × 512) |
Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128 |
Concatenation: Input (64 × 64 × 128), (64 × 64 × 128), Output (64 × 64 × 256) |
Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 128 × 128, Num_c: 64 |
Concatenation: Input (128 × 128 × 64), (128 × 128 × 64), Output (128 × 128 × 128) |
Upsampling: 4 × 4 Transpose Convolution, Output: 256×256, Num_c: 3 |
Discriminator Architecture |
---|
Input Image (256 × 256 × 3) + Target Image (256 × 256 × 3) |
Concatenation: Input (256 × 256 × 3), (256 × 256 × 3), Output (2 × 2 × 1024) |
Downsample 4 × 4 Convolution + BN + ReLu, Output: 128 × 128, Num_c: 64 |
Downsample 4 × 4 Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128 |
Downsample 4 × 4 Convolution + BN + ReLu, Output: 32 × 32, Num_c: 256 |
Zero Padding 2D: Output: 34 × 34, Num_c: 256 |
Downsample 4 × 4 Convolution + BN + ReLu, Output: 31 × 31, Num_c: 512 |
Zero Padding 2D: Output: 33×33, Num_c: 512 |
Downsample 4 × 4 Convolution + BN + ReLu, Output: 30 × 30, Num_c: 1 |
Index | Pyramid | GMM | CGANet |
---|---|---|---|
PSNR | 23.48 ± 2.09 | 24.37 ± 2.15 | 25.85 ± 1.57 |
SSIM | 0.731 ± 0.06 | 0.762 ± 0.06 | 0.768 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hettiarachchi, P.; Nawaratne, R.; Alahakoon, D.; De Silva, D.; Chilamkurti, N. Rain Streak Removal for Single Images Using Conditional Generative Adversarial Networks. Appl. Sci. 2021, 11, 2214. https://doi.org/10.3390/app11052214
Hettiarachchi P, Nawaratne R, Alahakoon D, De Silva D, Chilamkurti N. Rain Streak Removal for Single Images Using Conditional Generative Adversarial Networks. Applied Sciences. 2021; 11(5):2214. https://doi.org/10.3390/app11052214
Chicago/Turabian StyleHettiarachchi, Prasad, Rashmika Nawaratne, Damminda Alahakoon, Daswin De Silva, and Naveen Chilamkurti. 2021. "Rain Streak Removal for Single Images Using Conditional Generative Adversarial Networks" Applied Sciences 11, no. 5: 2214. https://doi.org/10.3390/app11052214
APA StyleHettiarachchi, P., Nawaratne, R., Alahakoon, D., De Silva, D., & Chilamkurti, N. (2021). Rain Streak Removal for Single Images Using Conditional Generative Adversarial Networks. Applied Sciences, 11(5), 2214. https://doi.org/10.3390/app11052214