Fuzzy Relations Matrixes of Damages and Technical Wear Related to Apartment Houses
Abstract
:1. Introduction
1.1. Literature Survey
1.2. Technical Damage and Wear
- I—mechanical defects of the structure and surface of elements
- II—defects of elements caused by water penetration and humidity migration
- III—defects symptomatic of the loss of the original shape of wooden elements
- IV—defects of wooden elements attacked by insects—technical pests of wood
2. Method of Research
2.1. Setting the Problem—Fuzzy Relations
- a fuzzy set of the technical wear of building elements A ⊆ Ze ⇔ Z (to simplify the designations): Z = {(µZ(z), z)}, ∀ z ∈ Z;
- a fuzzy set of damage to building elements B ⊆ U: U = {(µU(u), u)}, ∀ u∈ U.
- domain of fuzzy relation: dom R(Z) = 0.70/Z2 + 0.74/Z3 + 0.67/Z4 + 0.67/Z7 + 0.45/Z8 + 0.61/Z9 + 0.57/Z10 + 0.83/Z13 + 0.70/Z15 + 0.84/Z20
- scope of fuzzy relation: ran R(u) = 0.29/u1 + 0.26/u2 + 0.23/u3 + 0.30/u4 + 0.17/u5 + 0.48/u6 + 0.55/u7 + 0.57/u8 + 0.11/u9 + 0.63/u10 + 0.21/u11 + 0.63/u12 + 0.81/u13 + 0.57/u14 + 0.84/u15 + 0.79/u16 + 0.67/u17 + 0.60/u18 + 0.56/u19 + 0.54/u20 + 0.61/u21 + 0.55/u22 + 0.45/u23 + 0.00/u24 + 0.12/u25 + 0.42/u26 + 0.04/u27 + 0.07/u28 + 0.45/u29 + 0.57/u30
- height of fuzzy relation: h{R(Z,u)} = 0.84
2.2. Fuzzy Relational Equations
2.2.1. The Maximal Relational Equation
2.2.2. The Minimal Relational Equation
3. Results and Conclusions
- for each of the selected building elements, the maximal and minimal fuzzy relational equations (damage and technical wear) were determined and given in the form of clear relational matrixes that constitute big data arrays; they define the domain and range of the maximal and minimal fuzzy relations, the height of the fuzzy relations, their differences, and the place of their occurrence between the maximal and minimal dependencies;
- the calculations in the fuzzy sets enabled the cause-effect relationships (technical wear and damage) of the fuzzy events, which are defined in the categories of fuzzy relations for the three middle maintenance states of buildings, to be found;
- all the analyzed relations on the fuzzy sets are anti-transitive and weakly antisymmetric; the domain and scope were numerically determined in the complete matrix of the fuzzy relations, which are as follows:
- o
- dom R(Z) = 0.70/Z2 + 0.74/Z3 + 0.67/Z4 + 0.67/Z7 + 0.45/Z8 + 0.61/Z9 + 0.57/Z10 + 0.83/Z13 + 0.70/Z15 + 0.84/Z20
- o
- ran R(u) = 0.29/u1 + 0.26/u2 + 0.23/u3 + 0.30/u4 + 0.17/u5 + 0.48/u6 + 0.55/u7 + 0.57/u8 + 0.11/u9 + 0.63/u10 + 0.21/u11 + 0.63/u12 + 0.81/u13 + 0.57/u14 + 0.84/u15 + 0.79/u16 + 0.67/u17 + 0.60/u18 + 0.56/u19 + 0.54/u20 + 0.61/u21 + 0.55/u22 + 0.45/u23 + 0.00/u24 + 0.12/u25 + 0.42/u26 + 0.04/u27 + 0.07/u28 + 0.45/u29 + 0.57/u30
- for each of the 10 selected building elements, the maximal and minimal fuzzy relational equations were determined, and their solutions were given in the form of clear relational matrixes (3 × 3), which define:
- o
- the height of the fuzzy relations, which in the case of the maximal solutions in the paper is equal to 1 for all the analyzed elements, and in the case of the minimal solutions range from 0.44 to 0.68; the span of values is relatively narrow, which indicates the minimal heights of fuzzy relations may be expected above 0.5 (average 0.56) in the interval [0; 1];
- o
- differences and their place of occurrence between the maximal and minimal dependencies, or, if these differences do not exist, the exact value of the fuzzy relation that occurs in different compositions that are characteristic for different building elements. However, there is almost always the middle composition of (ZIII-UIII), in which the fuzzy relations take the values from 0.41 to 0.50, and additionally also 2–4 compositions in other places;
- it was observed that the middle compositions (ZIII-UIII) are identical and that they unambiguously define the value of fuzzy relation (technical wear and damage) R ⊆ Z × U in interval [0, 1], which is equal to:
- o
- for foundations: 0.50
- o
- for basement walls: 0.48
- o
- for solid floors above basements: 0.46
- o
- for structural walls: 0.48
- o
- for internal stairs: 0.45
- o
- for roof constructions: 0.41
- o
- for window joinery: 0.50
- o
- for inner plasters: 0.44
- o
- for facades: 0.44
All fuzzy relations R ⊆ Z × U are in the middle of the membership function, which means close to 0.5 (strong relations)
- the search for fuzzy relations in wooden inter-story floors did not bring the expected results. This can be explained by significant disproportions in their state of preservation in different apartments and also by the averaging (blurring) of the results of the technical assessment of these floors.
4. Discussion and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zavadskas, E.K.; Antuchevičienė, J.; Kapliński, O. Multi-criteria decision making in civil engineering: Part I—A state-of-the-art survey. Eng. Struct. Technol. 2016, 7, 103–113. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antuchevičienė, J.; Kaplinski, O. Multi-criteria decision making in civil engineering. Part II—Applications. Eng. Struct. Technol. 2016, 7, 151–167. [Google Scholar] [CrossRef]
- Multi-Author Work under Kapliński, O. lead. Research Models and Methods in Construction Projects Engineering; KILiW PAN: Warsaw, Poland, 2007. [Google Scholar]
- Konior, J. Decision assumptions on building maintenance management. Probabilistic methods. Arch. Civ. Eng. 2007, 53, 403–423. [Google Scholar]
- Hellwig, Z. Elements of Probability Calculus and Mathematical Statistics; PWN: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- Morrison, D. Multivariate Statistical Methods, 4th ed.; Duxbury Press: London, UK, 2004. [Google Scholar]
- Jackson, S. Research Methods and Statistics. A Critical Thinking Approach, 5th ed.; Cengage: Boston, MA, USA, 2019. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.; Aliev, R. Fuzzy Logic Theory and Applications; World Scientific Publishing Co Pte Ltd.: Singapore, 2018. [Google Scholar]
- Yager, R.R. A note on probabilities of fuzzy events. Inf. Sci. 1979, 18, 113–129. [Google Scholar] [CrossRef]
- Yager, R.R. On the fuzzy cardinality of a fuzzy set. Int. J. Gen. Syst. 2006, 35, 191–206. [Google Scholar] [CrossRef]
- Sanchez, E. Resolution of composite fuzzy relation equations. Inf. Control. 1976, 30, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, A. Introduction to the Theory of Fuzzy Subsets; Academic Press: Waltham, MA, USA, 1975; Volume 2. [Google Scholar]
- Kacprzyk, J. Fuzzy Sets in the System Analysis; PWN: Warsaw, Poland, 1986. [Google Scholar]
- Knight, F.H. Risk, Uncertainty and Profit; Courier Corporation: Mineola, NY, USA, 2012. [Google Scholar]
- Menassa, C.C. Evaluating sustainable retrofits in existing buildings under uncertainty. Energy Build. 2011, 43, 3576–3583. [Google Scholar] [CrossRef]
- Konior, J. Technical Assessment of Old Buildings by Fuzzy Approach. Arch. Civ. Eng. 2019, 65, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Konior, J. Technical Assessment of old buildings by probabilistic approach. Arch. Civ. Eng. 2020, 66, 443–466. [Google Scholar] [CrossRef]
- Nowogońska, B. Diagnoses in the Aging Process of Residential Buildings Constructed Using Traditional Technology. Buildings 2019, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Nowogońska, B. Intensity of damage in the aging process of buildings. Arch. Civ. Eng. 2020, 66, 19–31. [Google Scholar] [CrossRef]
- Nowogońska, B.; Korentz, J. Value of Technical Wear and Costs of Restoring Performance Characteristics to Residential Buildings. Buildings 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Nowogońska, B. The Method of Predicting the Extent of Changes in the Performance Characteristics of Residential Buildings. Arch. Civ. Eng. 2019, 65, 81–89. [Google Scholar] [CrossRef]
- Nowogońska, B. Proposal for Determing the Scale of Renovation Needs of Residential Buildings. Civ. Environ. Eng. Rep. 2016, 22, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Konior, J. Maintenance of apartment buildings and their measurable deterioration. Tech. Trans. 2017, 114, 101–107. [Google Scholar] [CrossRef]
- Konior, J. Bi-serial correlation of civil engineering building elements under constant technical deterioration. J. Sci. Gen. Tadeusz Kosciuszko Mil. Acad. Land Forces 2016, 179, 142–150. [Google Scholar]
- Konior, J. Intensity of defects in residential buildings and their technical wear. Tech. Trans. Civ. Eng. 2014, 111, 137–146. [Google Scholar]
- Konior, J.; Sawicki, M.; Szóstak, M. Influence of Age on the Technical Wear of Tenement Houses. Appl. Sci. 2020, 11, 297. [Google Scholar] [CrossRef]
- Konior, J.; Sawicki, M.; Szóstak, M. Intensity of the Formation of Defects in Residential Buildings with Regards to Changes in Their Reliability. Appl. Sci. 2020, 10, 6651. [Google Scholar] [CrossRef]
- Konior, J.; Sawicki, M.; Szóstak, M. Damage and Technical Wear of Tenement Houses in Fuzzy Set Categories. Appl. Sci. 2021, 11, 1484. [Google Scholar] [CrossRef]
- Plebankiewicz, E.; Zima, K.; Wieczorek, D. Life Cycle Cost Modelling of Buildings with Consideration of the Risk. Arch. Civ. Eng. 2016, 62, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Plebankiewicz, E.; Zima, K. Quantification of the risk addition in life cycle cost of a building object. Tech. Trans. 2017, 114, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Plebankiewicz, E.; Karcińska, P. Creating a Construction Schedule Specifying Fuzzy Norms and the Number of Workers. Arch. Civ. Eng. 2016, 62, 149–166. [Google Scholar]
- Plebankiewicz, E.; Zima, K.; Wieczorek, D. Original Model for Estimating the Whole Life Costs of Buildings and its Verification. Arch. Civ. Eng. 2019, 65, 163–179. [Google Scholar] [CrossRef]
- Wieczorek, D.; Plebankiewicz, E.; Zima, K. Model estimation of the whole life cost of a building with respect to risk factors. Technol. Econ. Dev. Econ. 2019, 25, 20–38. [Google Scholar] [CrossRef] [Green Version]
- Frangopol, D.M.; Lin, K.-Y.; Estes, A.C. Life-Cycle Cost Design of Deteriorating Structures. J. Struct. Eng. 1997, 123, 1390–1401. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Kim, J. Evaluating the Impact of Defect Risks in Residential Buildings at the Occupancy Phase. Sustainability 2018, 10, 4466. [Google Scholar] [CrossRef] [Green Version]
- Zayed, T.M.; Chang, L.-M.; Fricker, J.D. Life-Cycle Cost Analysis using Deterministic and Stochastic Methods: Conflicting Results. J. Perform. Constr. Facil. 2002, 16, 63–74. [Google Scholar] [CrossRef]
- Oduyemi, O.; Okoroh, M.; Fajana, O.S. Risk assessment methods for life cycle costing in buildings. Sustain. Build. 2016, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Kwong, C.K.; Dillon, T.S.; Fung, K.Y. An intelligent fuzzy regression approach for affective product design that captures nonlinearity and fuzziness. J. Eng. Des. 2011, 22, 523–542. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Afshar, A.; Khanzadi, M.; Howick, S. Integrating system dynamics and fuzzy logic modelling for construction risk management. Constr. Manag. Econ. 2008, 26, 1197–1212. [Google Scholar] [CrossRef]
- Ibadov, N. Fuzzy Estimation of Activities Duration in Construction Projects. Arch. Civ. Eng. 2015, 61, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Ibadov, N.; Kulejewski, J. Construction projects planning using network model with the fuzzy decision node. Int. J. Environ. Sci. Technol. 2019, 16, 4347–4354. [Google Scholar] [CrossRef] [Green Version]
- Ibadov, N.; Kulejewski, J. The assessment of construction project risks with the use of fuzzy sets theory. Tech. Trans. 2014, 1, 175–182. [Google Scholar]
- Ibadov, N. The Alternative Net Model with the Fuzzy Decision Node for the Construction Projects Planning. Arch. Civ. Eng. 2018, 64, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Knight, K.; Fayek, A.R. Use of Fuzzy Logic for Predicting Design Cost Overruns on Building Projects. J. Constr. Eng. Manag. 2002, 128, 503–512. [Google Scholar] [CrossRef]
- Al-Humaidi, H.M.; Hadipriono, T.F. Fuzzy logic approach to model delays in construction projects using rotational fuzzy fault tree models. Civ. Eng. Environ. Syst. 2010, 27, 329–351. [Google Scholar] [CrossRef]
- Andrić, J.M.; Wang, J.X.W.; Zou, P.; Zhang, J. Fuzzy Logic–Based Method for Risk Assessment of Belt and Road Infrastructure Projects. J. Constr. Eng. Manag. 2019, 145, 238–262. [Google Scholar] [CrossRef]
- Dikmen, I.; Birgonul, M.T.; Han, S. Using fuzzy risk assessment to rate cost overrun risk in international construction projects. Int. J. Proj. Manag. 2007, 25, 494–505. [Google Scholar] [CrossRef]
- Leśniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. Fuzzy AHP Application for Supporting Contractors’ Bidding Decision. Symmetry 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, D. Fuzzy risk assessment in the life cycle of building object—Selection of the right defuzzification method. In Proceedings of the Fourth Huntsville Gamma-Ray Burst Symposium, Huntsville, AL, USA, 15–20 September 1997; AIP Publishing: Melville, NY, USA, 2018; Volume 1978, p. 240005. [Google Scholar]
- Kamal, K.J.; Jain, B.B. Application of Fuzzy Concepts to the Visual Assessment of Deteriorating Reinforced Concrete Structures. J. Constr. Eng. Manag. 2012, 138, 399–408. [Google Scholar]
- Marzouk, M.; Amin, A. Predicting Construction Materials Prices Using Fuzzy Logic and Neural Networks. J. Constr. Eng. Manag. 2013, 139, 1190–1198. [Google Scholar] [CrossRef]
- Sharma, S.; Goyal, P.K. Fuzzy assessment of the risk factors causing cost overrun in construction industry. Evol. Intell. 2019, 1–13. [Google Scholar] [CrossRef]
- Ammar, M.T.; Zayed, T.; Moselhi, O. Fuzzy-based life-cycle cost model for decision making under subjectivity. J. Constr. Eng. Manag. 2012, 139, 556–563. [Google Scholar] [CrossRef]
- Multi-Author Work under Czapliński, K. lead. Assessment of Wroclaw Downtown Apartment Houses’ Technical Conditions; Reports Series “U” of Building Engineering Institute at Wroclaw University of Science and Technology; Wroclaw University of Science and Technology: Wroclaw, Poland, 1984. [Google Scholar]
Reference | Authors | Year | Topic of Study | Type of Approach |
---|---|---|---|---|
[1,2,3,4] | Zavadskas, Antuchevičienė, Kapliński, Konior | 2007–2015 | Decision making | Models and methods |
[5,6,7] | Hellwig, Morrison, Jackson | 2001–2019 | Randomness | Statistics |
[8,9,10,11,12,13,14] | Zadeh, Yager, Kaufmann, Sanchez, Kacprzyk | 1965–2007 | Uncertainness | Fuzzy sets |
[15,16,17,18] | Knight, Menassa, Konior | 2011–2020 | Uncertainty | Appraisal of buildings |
[19,20,21,22,23,24,25,26,27,28,29] | Nowogońska, Konior, Sawicki, Szóstak | 2014–2020 | Technical assessment | Diagnosis of buildings |
[30,31,32,33,34,35,36,37,38] | Plebankiewicz, Zima, Wieczorek, Frangopol, Lin, Estes, Lee, Kim, Zayed, Chang, Fricker, Oduyemi, Okoroh, Fajana | 1997–2019 | Cost and risk modeling | LCC of buildings |
[39,40] | Chan, Kwong, Dillon, Fung, Nasirzadeh, Afshar, Khanzadi, Howick | 2008–2011 | Nonlinearity and fuzziness | Fuzzy regression |
[41,42,43,44,45,46,47,48,49] | Ibadov, Kulejewski, Knight, Robinson, Fayek, Al-Humaidi, Hadipriono, Andrić, Wang, Zou, Zhang, Dikmen, Birgonul, Han, Leśniak | 2002–2019 | Fuzzy logic | Construction management |
[50,51] | Wieczorek, Kamal, Jain | 2012–2018 | Fuzzy assessment | LCC of buildings |
[52,53,54] | Marzouk, Amin, Sharma, Goyal, Ammar, Zayed, Moselhi | 2012–2019 | Fuzzy assessment | Construction engineering |
[55] | Czapliński | 1984–1996 | Technical assessment | Wroclaw downtown apartment houses |
The Probability of the Occurrence of Elementary Damage p(u), Which is Typical for 10 Selected Building Elements | Foundations | Basement Walls | Solid Floors Above Basements | Structural Walls | Inter-Story Wooden Floors | Stairs | Roof Construction | Window Joinery | Inner Plasters | Facades | |
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Damage | p(u)2 | p(u)3 | p(u)4 | p(u)7 | p(u)8 | p(u)9 | p(u)10 | p(u)13 | p(u)15 | p(u)20 |
u1 | Mechanical damage | 0.86 | 0.89 | 0.74 | 0.81 | ||||||
u2 | Leaks | 0.93 | |||||||||
u3 | Brick losses | 0.78 | 0.66 | 0.96 | 0.78 | ||||||
u4 | Mortar losses | 0.68 | 0.71 | 0.91 | |||||||
u5 | Brick decay | 0.76 | 0.63 | 0.73 | 0.79 | ||||||
u6 | Mortar decay | 0.49 | 0.74 | 0.8 | 0.86 | ||||||
u7 | Peeling off of paint coatings | 0.79 | 0.85 | ||||||||
u8 | Falling off of paint coatings | 0.31 | 0.32 | ||||||||
u9 | Cracks in bricks | 0.78 | 0.52 | 0.56 | 0.25 | ||||||
u10 | Cracks on plaster | 0.39 | 0.69 | 0.78 | 0.82 | ||||||
u11 | Scratching on walls | 0.11 | |||||||||
u12 | Scratching on plaster | 0.55 | 0.80 | 0.73 | 0.75 | ||||||
u13 | Loosening of plaster | 0.49 | 0.44 | 0.56 | |||||||
u14 | Falling off of plaster sheets | 0.13 | 0.22 | ||||||||
u15 | Dampness | 0.35 | 0.48 | 0.22 | 0.66 | 0.81 | 0.62 | 0.47 | 0.14 | 0.54 | |
u16 | Weeping | 0.09 | 0.24 | 0.18 | 0.18 | 0.53 | 0.59 | 0.44 | 0.29 | 0.10 | 0.38 |
u17 | Biological corrosion of bricks | 0.66 | 0.17 | 0.39 | |||||||
u18 | Fungus | 0.08 | 0.03 | 0.19 | |||||||
u19 | Mold and rot | 0.03 | 0.05 | 0.05 | 0.11 | 0.03 | 0.14 | ||||
u20 | Corrosion raid of steel beams | 0.52 | 0.72 | ||||||||
u21 | Surface corrosion of steel beams | 0.68 | 0.54 | ||||||||
u22 | Deep corrosion of steel beams | 0.24 | 0.16 | ||||||||
u23 | Flooding with water | 0.04 | |||||||||
u24 | Dynamic sensitivity of floor beams | 0.64 | |||||||||
u25 | Deformations of wooden beams | 0.35 | |||||||||
u26 | Skewing of window joinery | 0.75 | |||||||||
u27 | Warping of window joinery | 0.59 | |||||||||
u28 | Delamination of wooden elements | 0.51 | |||||||||
u29 | Partial insect infestation of wooden elements | 0.07 | 0.15 | 0.10 | |||||||
u30 | Complete insect infestation of wooden elements | 0.25 | 0.5 | 0.30 |
u1 | u2 | u3 | u4 | u5 | u6 | u7 | u8 | u9 | u10 | u11 | u12 | u13 | u14 | u15 | u16 | u17 | u18 | u19 | u20 | u21 | u22 | u23 | u24 | u25 | u26 | u27 | u28 | u29 | u30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z2 | 0.00 | 0.00 | 0.13 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.70 | 0.64 | 0.36 | 0.00 | 0.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Z3 | 0.00 | 0.00 | 0.23 | 0.28 | 0.07 | 0.05 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.74 | 0.52 | 0.31 | 0.00 | 0.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Z4 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.58 | 0.67 | 0.00 | 0.00 | 0.00 | 0.42 | 0.29 | 0.55 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Z7 | 0.00 | 0.00 | 0.19 | 0.30 | 0.17 | 0.09 | 0.00 | 0.00 | 0.11 | 0.03 | 0.21 | 0.12 | 0.00 | 0.00 | 0.56 | 0.46 | 0.67 | 0.00 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Z8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.09 | 0.00 | 0.07 | 0.27 | 0.00 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.43 |
Z9 | 0.05 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 | 0.00 | 0.54 | 0.61 | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 |
Z10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.43 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.28 | 0.57 |
Z13 | 0.29 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.83 | 0.74 | 0.00 | 0.00 | 0.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.42 | 0.04 | 0.00 | 0.45 | 0.42 |
Z15 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 | 0.15 | 0.25 | 0.00 | 0.30 | 0.00 | 0.18 | 0.67 | 0.57 | 0.70 | 0.61 | 0.00 | 0.38 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Z20 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.48 | 0.55 | 0.57 | 0.00 | 0.63 | 0.00 | 0.63 | 0.81 | 0.50 | 0.84 | 0.79 | 0.00 | 0.60 | 0.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Group Number | Building Element | Parameters of Fuzzy Relations | Characteristics of Maximal Fuzzy Relations | Characteristics of Minimal Fuzzy Relations |
---|---|---|---|---|
Z2 | Foundations | dom R(Z) | 1.00/ZII + 1.00/ZIII + 1.00/ZIV | 0.50/ZIII + 0.61/ZIV |
ran R(U) | 1.00/UII + 0.61/UIII + 0.61/UIV | 0.61/UIII + 0.61/UIV | ||
h{R(Z,U)} | 1.00 | 0.61 | ||
Z3 | Basement walls | dom R(Z) | 1.00/ZII + 1.00/ZIII + 1.00/ZIV | 0.48/ZIII + 0.61/ZIV |
ran R(U) | 1.00/UII + /0.61UIII + 1.00/UIV | 0.61/UIII | ||
h{R(Z,U)} | 1.00 | 0.61 | ||
Z4 | Solid floors above basements | dom R(Z) | 0.28/ZII + 0.46/ZIII + 1.00/ZIV | 0.28/ZII + 0.46/ZIII |
ran R(U) | 1.00/UII + 1.00/UIII + 1.00/UIV | 0.41/UII + 0.46/UIII | ||
h{R(Z,U)} | 1.00 | 0.46 | ||
Z7 | Structural walls | dom R(Z) | 1.00/ZII + 1.00/ZIII + 1.00/ZIV | 0.48/ZIII + 0.62/ZIV |
ran R(U) | 1.00/UII + 0.62/UIII + 1.00/UIV | 0.62/UIII + 0.43/UIV | ||
h{R(Z,U)} | 1.00 | 0.62 | ||
Z8 | Inter-story wooden floors | dom R(Z) | 1.00/ZII + 1.00/ZIII + 1.00/ZIV | 0.36/ZIII + 0.52/ZIV |
ran R(U) | 1.00/UII + 1.00/UIII + 1.00/UIV | 0.45/UIII + 0.48/UIV | ||
h{R(Z,U)} | 1.00 | 0.54 | ||
Z9 | Stairs | dom R(Z) | 0.28/ZII + 1.00/ZIII + 1.00/ZIV | 0.28/ZII + 0.45/ZIII |
ran R(U) | 1.00/UII + 1.00/UIII + 1.00/UIV | 0.43/UII + 0.45/UIII | ||
h{R(Z,U)} | 1.00 | 0.45 | ||
Z10 | Roof construction | dom R(Z) | 1.00/ZII + 1.00/ZIII + 1.00/ZIV | 0.30/ZII + 0.44/ZIII |
ran R(U) | 1.00/UII + 1.00/UIII + 1.00/UIV | 0.41/UIII + 0.44/UIV | ||
h{R(Z,U)} | 1.00 | 0.44 | ||
Z13 | Window joinery | dom R(Z) | 0.29/ZII + 0.50/ZIII + 1.00/ZIV | 0.29/ZII + 0.50/ZIII + 0.65/ZIV |
ran R(U) | 1.00/UII + 0.65/UIII + 1.00/UIV | 0.40/UII + 0.65/UIII + 0.50/UIV | ||
h{R(Z,U)} | 1.00 | 0.65 | ||
Z15 | Inner plasters | dom R(Z) | 0.30/ZII + 1.00/ZIII + 1.00/ZIV | 0.30/ZII + 0.44/ZIII + 0.65/ZIV |
ran R(U) | 1.00/UII + 0.65/UIII + 1.00/UIV | 0.30/UII + 0.65/UIII | ||
h{R(Z,U)} | 1.00 | 0.65 | ||
Z20 | Facades | dom R(Z) | 0.28/ZII + 0.45/ZIII + 1.00/ZIV | 0.28/ZII + 0.45/ZIII + 0.68/ZIV |
ran R(U) | 1.00/UII + 1.00/UIII + 0.68/UIV | 0.45/UII + 0.44/UIII + 0.68/UIV | ||
h{R(Z,U)} | 1.00 | 0.68 |
Fuzzy Relational Equations of Damage (U), Which Correspond to the II, III, and IV Conditions of the Maintenance of the Element and Its Technical Wear (Z) | ||||||||
---|---|---|---|---|---|---|---|---|
Maximal Fuzzy Relational Equation | Minimal Fuzzy Relational Equation | |||||||
Z2 | Foundations | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
ZIII | 1.00 | 0.50 | 0.00 | 0.00 | 0.50 | 0.00 | ||
ZIV | 1.00 | 0.61 | 0.61 | 0.00 | 0.61 | 0.61 | ||
Z3 | Basement walls | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
ZIII | 1.00 | 0.48 | 0.00 | 0.00 | 0.48 | 0.00 | ||
ZIV | 1.00 | 0.61 | 1.00 | 0.00 | 0.61 | 0.00 | ||
Z4 | Solid floors above basements | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 0.28 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | ||
ZIII | 0.41 | 0.46 | 0.00 | 0.41 | 0.46 | 0.00 | ||
ZIV | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | ||
Z7 | Structural walls | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
ZIII | 1.00 | 0.48 | 0.43 | 0.00 | 0.48 | 0.43 | ||
ZIV | 1.00 | 0.62 | 1000 | 0.00 | 0.62 | 0.00 | ||
Z8 | Inter-story wooden floors | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
ZIII | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
ZIV | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | ||
Z9 | Stairs | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 0.28 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | ||
ZIII | 0.43 | 0.45 | 1.00 | 0.43 | 0.45 | 0.00 | ||
ZIV | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | ||
Z10 | Roof construction | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 1.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.30 | ||
ZIII | 1.00 | 0.41 | 0.44 | 0.00 | 0.41 | 0.44 | ||
ZIV | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | ||
Z13 | Window joinery | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 0.29 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | ||
ZIII | 0.4 | 0.50 | 0.50 | 0.40 | 0.50 | 0.50 | ||
ZIV | 1.00 | 0.65 | 1.00 | 0.00 | 0.65 | 0.00 | ||
Z15 | Inner plasters | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 0.30 | 0.00 | 0.00 | 0.30 | 0,00 | 0.00 | ||
ZIII | 1.00 | 0.44 | 0.00 | 0.00 | 0.44 | 0.00 | ||
ZIV | 1.00 | 0.65 | 1.00 | 0.00 | 0.65 | 0.00 | ||
Z20 | Facades | UII | UIII | UIV | UII | UIII | UIV | |
ZII | 0.28 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | ||
ZIII | 0.45 | 0.44 | 0.00 | 0.45 | 0.44 | 0.00 | ||
ZIV | 1.00 | 1.00 | 0.68 | 0.00 | 0.00 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konior, J.; Stachoń, T. Fuzzy Relations Matrixes of Damages and Technical Wear Related to Apartment Houses. Appl. Sci. 2021, 11, 2223. https://doi.org/10.3390/app11052223
Konior J, Stachoń T. Fuzzy Relations Matrixes of Damages and Technical Wear Related to Apartment Houses. Applied Sciences. 2021; 11(5):2223. https://doi.org/10.3390/app11052223
Chicago/Turabian StyleKonior, Jarosław, and Tomasz Stachoń. 2021. "Fuzzy Relations Matrixes of Damages and Technical Wear Related to Apartment Houses" Applied Sciences 11, no. 5: 2223. https://doi.org/10.3390/app11052223
APA StyleKonior, J., & Stachoń, T. (2021). Fuzzy Relations Matrixes of Damages and Technical Wear Related to Apartment Houses. Applied Sciences, 11(5), 2223. https://doi.org/10.3390/app11052223