Nucleoside Di- and Triphosphates as a New Generation of Anti-HIV Pronucleotides. Chemical and Biological Aspects
Abstract
:1. Introduction
2. Chemical Synthesis of Nucleoside Di- and Triphosphates
2.1. Early Methods for the Preparation of Nucleoside Di- and Triphosphates
2.2. Synthesis of Nucleoside Di- and Triphosphates Using Carbodiimides
2.3. Synthesis of Nucleoside Di- and Triphosphates via Phosphoramidate Intermediates
2.4. Synthesis of Diphosphates Using 5′-O-Tosylated Nucleosides
2.5. Synthesis of Nucleoside Di- and Triphosphates via Dichlorophosphate Intermediate
2.6. Synthesis of Nucleoside Di- and Triphosphates via Cyclic Phosphite Triester Intermediates
2.7. Synthesis of Nucleoside Di- and Triphosphates Using Cyclic Phosphate Triesters
2.8. Synthesis of Nucleoside Di- and Triphosphates via Mixed P(III)–P(V) Anhydrides
2.9. Synthesis of Nucleoside Di- and Triphosphates via Phosphobetaines
3. Anti-HIV Pronucleotides–Nucleotide Reverse-Transcriptase Inhibitors (NtRTIs)
3.1. Diphosphate Esters of 2′,3′-Dideoxynucleosides
3.2. Triphosphate Esters of 2′,3′-Dideoxynucleosides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, J.M.; Tymoczko, J.L.; Gatto, G.J.; Stryer, L. Biochemistry, 9th ed.; Palgrave Macmillan: London, UK, 2019. [Google Scholar]
- Depaix, A.; Peyrottes, S.; Roy, B. One-pot synthesis of nucleotides in water medium. Phosphorus Sulfur Silicon Relat. Elem. 2018, 194, 335–336. [Google Scholar] [CrossRef]
- Burgess, K.; Cook, D. Syntheses of Nucleoside Triphosphates. Chem. Rev. 2000, 100, 2047–2059. [Google Scholar] [CrossRef]
- Balzarini, J. Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives. Pharm. World Sci. 1994, 16, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Arts, E.J.; Wainberg, M.A. Mechanisms of Nucleoside Analog Antiviral Activity and Resistance during Human Immunodeficiency Virus Reverse Transcription. Antimicrob. Agents Chemother. 1996, 20, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Leibman, K.C.; Heidelberger, C. The Metabolism of P32-labeled Ribonucletides in Tissue Slices and Cell Suspensions. J. Biol. Chem. 1955, 216, 823–830. [Google Scholar] [CrossRef]
- Mansuri, M.M.; Hitchcock, M.J.; Buroker, R.A.; Bregman, C.L.; Ghazzouli, I.; Desiderio, J.V.; Starrett, J.E.; Sterzycki, R.Z.; Martin, J.C. Comparison of in vitro biological properties and mouse toxicities of three thymidine analogs active against human immunodeficiency virus. Antimicrob. Agents Chemother. 1990, 34, 637–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.; Chu, C.K.; Boudinot, F.D. Development and Optimization of anti-HIV Nucleoside Analogs and Prodrugs: A Review of Their Cellular Pharmacology, Structure-Activity Relationships and Pharmacokinetics. Adv. Drug Deliv. Rev. 1999, 39, 117–151. [Google Scholar] [CrossRef]
- Schultz, C. Prodrugs of biologically active phosphate esters. Bioorganic Med. Chem. 2003, 11, 885–898. [Google Scholar] [CrossRef]
- Sommadossi, J.P.; Carlisle, R.; Zhou, Z. Cellular pharmacology of 3′-azido-3′-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells. Mol. Pharmacol. 1989, 36, 9–14. [Google Scholar] [PubMed]
- McGuigan, C.; Pathirana, R.N.; Mahmood, N.; Devine, K.G.; Hay, A.J. Aryl phosphate derivatives of AZT retain activity against HIV1 in cell lines which are resistant to the action of AZT. Antivir. Res. 1992, 17, 311–321. [Google Scholar] [CrossRef]
- Anastasi, C.; Quéléver, G.; Burlet, S.; Garino, C.; Souard, F.; Kraus, J.-L. New antiviral nucleoside prodrugs await application. Curr. Med. Chem. 2003, 10, 1825–1843. [Google Scholar] [CrossRef]
- Wiemer, A.J.; Wiemer, D.F. Prodrugs of Phosphonates and Phosphates: Crossing the Membrane Barrier. Top. Curr. Chem. 2014, 360, 115–160. [Google Scholar] [CrossRef] [Green Version]
- McGuigan, C.; Nicholls, S.R.; O’Connor, T.J.; Kinchington, D. Synthesis of Some Novel Dialkyl Phosphate Derivatives of 3′-Modified Nucleosides as Potential Anti-AIDS Drugs. Antivir. Chem. Chemother. 1990, 1, 25–33. [Google Scholar] [CrossRef]
- McGuigan, C.; O’Connor, T.J.; Nicholls, S.R.; Nickson, C.; Kinchington, D. Synthesis and anti-HIV Activity of Some Novel Substituted Dialkyl Phosphate Derivatives of AZT and ddCyd. Antivir. Chem. Chemother. 1990, 1, 355–360. [Google Scholar] [CrossRef]
- Gosselin, G.; Girardet, J.L.; Perigaud, C.; Benzaria, S.; Lefebvre, I.; Schlienger, N.; Pompon, A.; Imbach, J.-L. New Insights Regarding the Potential of the Pronucleotide Approach in Antiviral Chemotherapy. Acta Biochim. Pol. 1996, 43, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, I.; Périgaud, C.; Pompon, A.; Aubertin, A.-M.; Girardet, J.-L.; Kirn, A.; Gosselin, G.; Imbach, J.-L. Mononucleoside Phosphotriester Derivatives with S-Acyl-2-thioethyl Bioreversible Phosphate-Protecting Groups: Intracellular Delivery of 3′-Azido-2′,3′-dideoxythymidine 5′-Monophosphate. J. Med. Chem. 1995, 38, 3941–3950. [Google Scholar] [CrossRef]
- Perigaud, C.; Gosselin, G.; Lefebvre, I.; Girardet, J.-L.; Benzaria, S.; Barber, I.; Imbach, J.-L. Rational Design for Cytosolic Delivery of Nucleoside Monophosphates: “SATE” and “DTE” as Enzym-Labile Transient Phosphate Protecting Groups. Bioorg. Med. Chem. Lett. 1993, 3, 2521–2526. [Google Scholar] [CrossRef]
- Peyrottes, S.; Egron, D.; Lefebvre, I.; Gosselin, G.; Imbach, J.-L.; Périgaud, C. SATE Pronucleotide Approaches: An Overview. Mini-Rev. Med. Chem. 2004, 4, 395–408. [Google Scholar] [CrossRef]
- Meier, C. 2-Nucleos-5′-O-yl-4H-1,3,2-benzodioxaphos-phinin-2-oxides—A New Concept for Lipophilic, Potential Prodrugs of Biologically Active Nucleoside Monophosphates. Angew. Chem. Int. Ed. 1996, 35, 70–72. [Google Scholar] [CrossRef]
- Meier, C.; Lorey, M.; de Clercq, E.; Balzarini, J. cycloSal-2′,3′-dideoxy-2′,3′-didehydrothymidine Monophosphate (cycloSal-d4TMP): Synthesis and Antiviral Evaluation of a New d4TMP Delivery System. J. Med. Chem. 1998, 41, 1417–1427. [Google Scholar] [CrossRef]
- Romanowska, J.; Szymańska-Michalak, A.; Boryski, J.; Stawinski, J.; Kraszewski, A.; Loddo, R.; Sanna, G.; Collu, G.; Secci, B.; la Colla, P. Aryl nucleoside H-phosphonates. Part 16: Synthesis and anti-HIV-1 activity of di-aryl nucleoside phosphotriesters. Bioorganic Med. Chem. 2009, 17, 3489–3498. [Google Scholar] [CrossRef] [PubMed]
- Kraszewski, A.; Sobkowski, M.; Stawinski, J. H-Phosphonate Chemistry in the Synthesis of Electrically Neutral and Charged Antiviral and Anticancer Pronucleotides. Front. Chem. 2020, 8, 8. [Google Scholar] [CrossRef]
- Chang, S.-I.; Griesgraber, G.; Wagner, C.R. Comparision of the Antiviral Activity of Hydrophobic Amoni Acid Phosphoramidate Monoesters of 2′,3′-Dideoxyadenosine (ddA) and 3′-Azido-3′-Deoxythymidine (AZT). Nucleosides Nucleotides Nucleic Acids 2001, 20, 1571–1582. [Google Scholar] [CrossRef]
- Drontle, D.P.; Wagner, C.R. Designing a Pronucleotide Stratagem: Lessons from Amino Acid Phosphoramidates of Anticancer and Antiviral Pyrimidines. Mini-Rev. Med. Chem. 2004, 4, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Chou, T.-F.; Griesgraber, G.W.; Wagner, C.R. Direct Measurement of Nucleoside Monophosphate Delivery from a Phosphoramidate Pronucleotide by Stable Isotope Labeling and LC−ESI--MS/MS. Mol. Pharm. 2004, 1, 102–111. [Google Scholar] [CrossRef] [PubMed]
- McIntee, E.J.; Remmel, R.P.; Schinazi, R.F.; Abraham, T.W.; Wagner, C.R. Probing the Mechanism of Action and Decomposition of Amino Acid Phosphomonoester Amidates of Antiviral Nucleoside Prodrugs. J. Med. Chem. 1997, 40, 3323–3331. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.R.; Chang, S.-L.; Griesgraber, G.W.; Song, H.; Mcintee, E.J.; Zimmerman, C.L. Antiviral nucleoside drug delivery via amino acid phosphoramidates. Nucleosides Nucleotides 1999, 18, 913–919. [Google Scholar] [CrossRef]
- Kolodziej, K.; Romanowska, J.; Stawinski, J.; Boryski, J.; Dąbrowska, A.; Lipniacki, A.; Piasek, A.; Kraszewski, A.; Sobkowski, M. Aryl H-Phosphonates 18. Synthesis, properties, and biological activity of 2′,3′-dideoxynucleoside (N-heteroaryl)phosphoramidates of increased lipophilicity. Eur. J. Med. Chem. 2015, 100, 77–88. [Google Scholar] [CrossRef]
- Romanowska, J.; Sobkowski, M.; Szymańska-Michalak, A.; Kołodziej, K.; Dąbrowska, A.; Lipniacki, A.; Piasek, A.; Pietrusiewicz, Z.M.; Figlerowicz, M.; Guranowski, A.; et al. ArylH-Phosphonates 17: (N-Aryl)phosphoramidates of Pyrimidine Nucleoside Analogues and Their Synthesis, Selected Properties, and Anti-HIV Activity. J. Med. Chem. 2011, 54, 6482–6491. [Google Scholar] [CrossRef]
- McGuigan, C.; Devine, K.G.; O’Connor, T.J.; Galpin, S.A.; Jeffries, D.J.; Kinchington, D. Synthesis and Evaluation of Some Novel Phosphoramidate Derivatives of 3′-Azido-3′-Deoxythymidine (AZT) as Anti-HIV Compounds. Antivir. Chem. Chemother. 1990, 1, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Hollenstein, M. Nucleoside Triphosphates—Building Blocks for the Modification of Nucleic Acids. Molecules 2012, 17, 13569–13591. [Google Scholar] [CrossRef]
- Hou, S.; Qu, Z.; Tang, L.; Shuhua, Q.Z.H. Advances in the Synthesis of Organic Pyrophosphate. Chin. J. Org. Chem. 2014, 34, 54. [Google Scholar] [CrossRef] [Green Version]
- Sherstyuk, Y.V.; Abramova, T.V. How to Form a Phosphate Anhydride Linkage in Nucleotide Derivatives. Chembiochem Eur. J. Chem. Biol. 2015, 16, 2562–2570. [Google Scholar] [CrossRef]
- Tanaka, H. Recent Approaches to the Chemical Synthesis of Sugar Nucleoside Diphosphates. Trends Glycosci. Glycotechnol. 2015, 27, 99–110. [Google Scholar] [CrossRef]
- Ahmadipour, S.; Miller, G.J. Recent advances in the chemical synthesis of sugar-nucleotides. Carbohydr. Res. 2017, 451, 95–109. [Google Scholar] [CrossRef]
- Kaczynski, T.P.; Chmielewski, M.K. Mini-Review of the Phosphate Center Activation Strategy in Nucleoside Triphosphate Preparation. Mini Rev. Org. Chem. 2017, 14, 448–452. [Google Scholar] [CrossRef]
- Camarasa, M.-J. Prodrugs of Nucleoside Triphosphates as a Sound and Challenging Approach: A Pioneering Work That Opens a New Era in the Direct Intracellular Delivery of Nucleoside Triphosphates. ChemMedChem 2018, 13, 1885–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddiley, J.; Todd, A.R. 122. Nucleotides. Part I. Muscle adenylic acid and adenosine diphosphate. J. Chem. Soc. 1947, 648–651. [Google Scholar] [CrossRef]
- Baddiley, J.; Michelson, A.M.; Todd, A.R. Nucleotides. Part II. A Synthesis of Adenosine Triphosphate. J. Chem. Soc. 1949, 582–586. [Google Scholar] [CrossRef]
- Baddiley, J.; Michelson, A.M.; Todd, A.R. Synthesis of Adenosine Triphosphate. Nat. Cell Biol. 1948, 161, 761–762. [Google Scholar] [CrossRef]
- Baddiley, J.; Clark, V.M.; Michalski, J.J.; Todd, A.R. Studies on Phosphorylation. 5. the Reaction of Tertiary Bases with Esters of Phosphorous, Phosphoric, and Pyrophosphoric Acids—A New Method of Selective Debenzylation. J. Chem. Soc. 1949, 815–821. [Google Scholar] [CrossRef]
- Anand, N.; Clark, V.M.; Hall, R.H.; Todd, A.R. Nucleotides. Part XV. A synthesis of Uridine-5′ Pyrophsphte, a Breakdown Product of the Coenzyme “Uridine-diphosphateglucose”. J. Chem. Soc. 1952, 3665–3669. [Google Scholar] [CrossRef]
- Kenner, G.W.; Todd, A.R.; Weymouth, F.J. 705. Nucleotides. Part XVII. N-Chloroamides as reagents for the chlorination of diesters of phosphorous acid. A new synthesis of uridine-5? Pyrophosphate. J. Chem. Soc. 1952, 3675–3681. [Google Scholar] [CrossRef]
- Corby, N.S.; Kenner, G.W.; Todd, A.R. 704. Nucleotides. Part XVI. Ribonucleoside-5? phosphites. A new method for the preparation of mixed secondary phosphites. J. Chem. Soc. 1952, 16, 3669–3675. [Google Scholar] [CrossRef]
- Khorana, G.; Todd, A.R. Studies on Phosphorylation. XI. The Reaction Between Carbodi-imides and Acid Esters of Phosphoric Acid—A New Method for the Preparation of Pyrophosphates. J. Chem. Soc. 1953, 2257–2260. [Google Scholar] [CrossRef]
- Baddiley, J.; Hughes, N.A. The Synthesis of Nucleotide Coenzymes. In Advances in Enzymology and Related Areas of Molecular Biology; Wiley: Hoboken, NJ, USA, 2006; Volume 22, pp. 157–203. [Google Scholar]
- Smith, M.; Moffat, J.G.; Khorana, H.G. Carbodiimides. VIII. Observations on the Reactions of Carbodiimides with Acids and Some New Applications in the Synthesis of Phosphoric Acid Esters. J. Am. Chem. Soc. 1958, 80, 6204–6212. [Google Scholar] [CrossRef]
- Smith, M.; Khorana, H.G. Nucleoside Polyphosphates. VI. An Improved and General Method for the Synthesis of Ribo- and Deoxyribonucleoside 5′-Triphosphates. J. Am. Chem. Soc. 1958, 80, 1141–1145. [Google Scholar] [CrossRef]
- Chambers, R.W.; Khorana, H.G. Nucleoside Polyphosphates. VII. The Use of Phosphoramidic Acids in the Synthesis of Nucleoside-5′ Pyrophosphates. J. Am. Chem. Soc. 1958, 80, 3749–3752. [Google Scholar] [CrossRef]
- Moffatt, J.G.; Khorana, H.G. Nucleoside Polyphosphates. VIII. New and Improved Syntheses of Uridine Diphosphate Glucose and Flavin Adenine Dinucleotide Using Nucleoside-5′-Phosphoramidates. J. Am. Chem. Soc. 1958, 80, 3756–3761. [Google Scholar] [CrossRef]
- Clark, V.M.; Kirby, G.W.; Todd, A.R. Studies on Phosphorylation. Part XV. The Use of Phosphoramidic Esters in Acylation. A New Preparation of Adenosine-5′-Pyrophsphate and Adenosine-5′-Triphosphate. J. Chem. Soc. 1957, 79, 1497–1501. [Google Scholar] [CrossRef]
- Moffatt, J.G. A General Synthesis of Nucleoside 5′-Triphosphates. Can. J. Chem. 1964, 599–604. [Google Scholar] [CrossRef]
- Hamilton, C.J.; Roberts, S.M.; Shipitsin, A. Synthesis of a Potent Inhibitor of HIV Reverse Transcriptase. Chem. Commun. 1998, 1087–1088. [Google Scholar] [CrossRef]
- Hebei, D.; Kirk, K.L.; Kinjo, J.; Kovacs, T.; Lesiak, K.; Balzarini, J.; de Clercq, E.; Torrence, P.F. Synthesis of a Difluoroethylenephosphonate Analogue of AZT 5′-Triphosphate and its Inhibition of HIV-1 Reverse Transcriptase. Bioorg. Med. Chem. Lett. 1991, 1, 357–360. [Google Scholar] [CrossRef]
- Kosma, P. Occurrence, Synthesis and Biosynthesis of Bacterial Heptoses. Curr. Org. Chem. 2008, 12, 1021–1039. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, S.; Sun, J.; Liu, S.; Xiao, Q.; Pu, S. A P(V)–N Activation Strategy for the Synthesis of Nucleoside Polyphosphates. J. Org. Chem. 2013, 78, 8417–8426. [Google Scholar] [CrossRef] [PubMed]
- Cramer, F.; Schaller, H.; Staab, H.A. Darstellung von Imidazoliden der Phosphorsaure. Chem. Ber. 1961, 1612–1621. [Google Scholar] [CrossRef]
- Schaller, H.; Staab, H.A.; Cramer, F. Zur Chemie der „energiereichen Phosphate”, XII. Phosphorylierungsreaktionen mit Salzen der Imidazolylphosphonate und Diimidazolylphosphinate. Eur. J. Inorg. Chem. 1961, 94, 1621–1633. [Google Scholar] [CrossRef]
- Cramer, F.; Neunhoeffer, H. Rektionen von Adenosin-5′-phosphorsaure-imidazolid—Eine neue Synthese von Adenosindiphosphat und Flavin-adenin-dinucleotid. Chem. Ber. 1965, 95, 1664–1669. [Google Scholar]
- Hoard, D.E.; Ott, D.G. Conversion of Mono- and Oligodeoxyribonucleotides to 5′-Triphosphates1. J. Am. Chem. Soc. 1965, 87, 1785–1788. [Google Scholar] [CrossRef]
- Cramer, F.; Neunhoeffer, H.; Scheit, K.H.; Schneider, G.; Tennigkeit, J. New Phosphorylation Reactions and Protecting Groups for Nucleotides. Angew. Chem. Int. Ed. 1962, 1, 331. [Google Scholar] [CrossRef]
- Kore, A.R.; Parmar, G. Convenient Synthesis of Nucleoside-5′-Diphosphates from the Corresponding Ribonucleoside-5′-phosphoroimidazole. Synth. Commun. 2006, 36, 3393–3399. [Google Scholar] [CrossRef]
- Mukaiyama, T.; Hashimoto, M. Phosphorylation by Oxidation-Reduction Condensation. Preparation of Active Phosphorylating Reagents. Bull. Chem. Soc. Jpn. 1971, 44, 2284. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Depaix, A.; Périgaud, C.; Peyrottes, S. Recent Trends in Nucleotide Synthesis. Chem. Rev. 2016, 116, 7854–7897. [Google Scholar] [CrossRef]
- Tanaka, H.; Yoshimura, Y.; Jorgensen, M.R.; Cuesta-Seijo, J.A.; Hindsgaul, O. A Simple Synthesis of Sugar Nucleoside Diphosphates by Chemical Coupling in Water. Angew. Chem. Int. Ed. 2012, 51, 11531–11534. [Google Scholar] [CrossRef]
- Davisson, V.J.; Davis, D.R.; Dixit, V.M.; Poulter, C.D. Synthesis of nucleotide 5′-diphosphates from 5′-O-tosyl nucleosides. J. Org. Chem. 1987, 52, 1794–1801. [Google Scholar] [CrossRef]
- Korhonen, H.J.; Bolt, H.L.; Vicente-Gines, L.; Perks, D.C.; Hodgson, D.R.W. PPN Pyrophosphate: A New Reagent for the Preparation of Nucleoside Triphosphates. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, H.J.; Bolt, H.L.; Hodgson, D.R.W. A procedure for the preparation and isolation of nucleoside-5′-diphosphates. Beilstein J. Org. Chem. 2015, 11, 469–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, M.; Kato, T.; Takenishi, T. A novel method for phosphorylation of nucleosides to 5′-nucleotides. Tetrahedron Lett. 1967, 8, 5065–5068. [Google Scholar] [CrossRef]
- Ludwig, J. A new route to nucleoside 5′-triphosphates. Acta Biochim. Biophys. Acad. Sci. Hung. 1981, 16, 131–133. [Google Scholar] [PubMed]
- Gillerman, I.; Fischer, B. An Improved One-Pot Synthesis of Nucleoside 5′-Triphosphate Analogues. Nucleosides Nucleotides Nucleic Acids 2010, 29, 245–256. [Google Scholar] [CrossRef]
- Grunze, H.; Koransky, W. Phosphorylierung von Nucleosiden mit Dichlor-phosphorsäure-anhydrid. Angew. Chem. 1959, 71, 407. [Google Scholar] [CrossRef]
- Koransky, W.; Grunze, H.; Münch, G. Phosphorylierung von Nucleosiden mit Pyrophosphorylchlorid. Z. Nat. B 1962, 17, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Arabshahi, A.; Frey, P.A. A Simplified Procedure for Synthesizing Nucleoside 1-Thiotriphosphates: dATPS, dGTPS, UTPS, and dTTPS. Biochem. Biophys. Res. Commun. 1994, 204, 150–155. [Google Scholar] [CrossRef]
- Goody, R.S.; Isakov, H. Simple Synthesis and Separation of the Diastereomers of α-Thio Analogs of Ribo- and Deoxyribo- Di- and Triphosphates. Tetrahedron Lett. 1986, 27, 3599–3602. [Google Scholar] [CrossRef]
- Kalek, M.; Jemielity, J.; Stepinski, J.; Stolarski, R.; Darzynkiewicz, E. A Direct Method for the Synthesis of Nucleoside 5-methylenebis(phopshonate)s from Nucleosides. Tetrahedron Lett. 2005, 46, 2417–2421. [Google Scholar] [CrossRef]
- Ludwig, J.; Eckstein, F. Rapid and Efficient Synthesis of Nucleoside 5′-O-(1-Thiotriphosphates), 5′-Triphosphates and 2′,3′-Cyclophosphorothioates Using 2-Chloro-4H-1,3,2-benzodioxaphosphorin-4-one. J. Org. Chem. 1989, 54, 631–635. [Google Scholar] [CrossRef]
- Ludwig, J.; Eckstein, F. Synthesis of nucleoside 5′-O-(1,3-dithiotriphosphates) and 5′-O-(1,1-dithiotriphosphates). J. Org. Chem. 1991, 56, 1777–1783. [Google Scholar] [CrossRef]
- Warnecke, S.; Meier, C. Synthesis of Nucleoside Di- and Triphosphates and Dinucleoside Polyphosphates with cycloSal-Nucleotides. J. Org. Chem. 2009, 74, 3024–3030. [Google Scholar] [CrossRef]
- Wendicke, S.; Warnecke, S.; Meier, C. Efficient Synthesis of Nucleoside Diphosphate Glycopyranoses. Angew. Chem. Int. Ed. 2008, 47, 1500–1502. [Google Scholar] [CrossRef]
- Cremosnik, G.S.; Hofer, A.; Jessen, H.J. Iterative Synthesis of Nucleoside Oligophosphates with Phosphoramidites. Angew. Chem. Int. Ed. 2013, 53, 286–289. [Google Scholar] [CrossRef]
- Meyers, C.L.F.; Borch, R.F. A Novel Method for the Preparation of Nucleoside Diphosphates. Org. Lett. 2001, 3, 3765–3768. [Google Scholar] [CrossRef]
- Wu, W.; Meyers, C.L.F.; Borch, R.F. A Novel Method for the Preparation of Nucleoside Triphosphates from Activated Nucleoside Phosphoramidates. Org. Lett. 2004, 6, 2257–2260. [Google Scholar] [CrossRef]
- Michelson, A.M. Chemistry of Nucleotides. In The Chemistry of Nucleosides and Nucleotides; Academic Press, Inc.: Cambridge, MA, USA, 1963; pp. 98–152. [Google Scholar]
- Bollmark, M.; Stawinski, J. A Facile Access to Nucleoside Phosphorofluoridate, Nucleoside Phosphorofluoridothioate, and Nucleoside Phosphorofluoridodithioate Monoesters. Tetrahedron Lett. 1996, 37, 5739–5742. [Google Scholar] [CrossRef]
- Garegg, P.J.; Regberg, T.; Stawinski, J.; Strömberg, R. Nucleoside phosphonates: Part 7. Studies on the oxidation of nucleoside phosphonate esters. J. Chem. Soc. Perkin Trans. 1 1987, 1, 1269–1273. [Google Scholar] [CrossRef]
- Kers, I.; Stawinski, J.; Kraszewski, A. A New Synthetic Method for the Preparation of Nucleoside Phosphoramidate Analogues with the Nitrogen Atom in Bridging Positions of the Phosphoramidate Linkage. Tetrahedron Lett. 1998, 39, 1219–1222. [Google Scholar] [CrossRef]
- Sun, Q.; Edathil, J.P.; Wu, R.; Smidansky, E.D.; Cameron, C.E.; Peterson, B.R. One-Pot Synthesis of Nucleoside 5′-Triphosphates from Nucleoside 5′-H-Phosphonates. Org. Lett. 2008, 10, 1703–1706. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Liu, S.; Sun, J.; Gong, S.-S. An H-phosphonate strategy for the synthesis of 2′,3′-dideoxynucleoside triphosphates and homodinucleotides. Chin. Chem. Lett. 2014, 25, 427–430. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, S.; Sun, J.; Gong, S.; Xiao, Q.; Shen, L. One-pot synthesis of symmetrical P1,P2-dinucleoside-5′-diphosphates from nucleoside-5′-H-phosphonates: Mechanistic insights into reaction path. Tetrahedron Lett. 2013, 54, 3842–3845. [Google Scholar] [CrossRef]
- Rachwalak, M.; Rozniewska, M.; Golebiewska, J.; Jakubowski, T.; Sobkowski, M.; Romanowska, J. A practical synthesis of nucleoside 5′-diphosphates from nucleoside 5′-H-phosphonate monoesters. Synth. Commun. 2020, 50, 3836–3844. [Google Scholar] [CrossRef]
- Tarrago-Litvak, L.; Andreola, M.L.; Fournier, M.; Nevinsky, G.A.; Parissi, V.; de Soultrait, V.R.; Litvak, S. Inhibitors of HIV-1 reverse transcriptase and integrase: Classical and emerging therapeutical approaches. Curr. Pharm. Des. 2002, 8, 125–133. [Google Scholar] [CrossRef]
- Cohen, S.S. Commentary on the Therapeutic Use of Nucleosides and the Penetrability of Phosphorylated Compounds. Biochem. Pharmacol. 1975, 24, 1929–1932. [Google Scholar] [CrossRef]
- Lichtenstein, J.; Barner, H.D.; Cohen, S.S. The Metabolism of Exogenously Supplied Nucleotides by Escherichia coli. J. Biol. Chem. 1960, 235, 457–465. [Google Scholar] [CrossRef]
- Iglesias, L.E.; Lewkowicz, E.S.; Medici, R.; Bianchi, P.; Iribarren, A.M. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol. Adv. 2015, 33, 412–434. [Google Scholar] [CrossRef] [PubMed]
- Pradere, U.; Garnier-Amblard, E.C.; Coats, S.J.; Amblard, F.; Schinazi, R.F. Synthesis of Nucleoside Phosphate and Phosphonate Prodrugs. Chem. Rev. 2014, 114, 9154–9218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wijk, G.; Hostetler, K.; Schlame, M.; Bosch, H.V.D. Cytidine diphosphate diglyceride analogs of antiretroviral dideoxynucleosides: Evidence for release of dideoxynucleoside-monophosphates by phospholipid biosynthetic enzymes in rat liver subcellular fractions. Biochim. Biophys. Acta Lipids Lipid Metab. 1991, 1086, 99–105. [Google Scholar] [CrossRef]
- Van Wijk, G.M.; Hostetler, K.Y.; Bosch, H.V.D. Lipid conjugates of antiretroviral agents: Release of antiretroviral nucleoside monophosphates by a nucleoside diphosphate diglyceride hydrolase activity from rat liver mitochondria. Biochim. Biophys. Acta Lipids Lipid Metab. 1991, 1084, 307–310. [Google Scholar] [CrossRef]
- Hostetler, K.Y.; Stuhmiller, L.M.; Lenting, H.B.M.; van den Bosch, H.; Richman, D.D. Synthesis and Antiretroviral Activity of Phospholipid Analogs of Azidothymidine and Other Antiviral Nucleosides. J. Biol. Chem. 1990, 265, 6112–6117. [Google Scholar] [CrossRef]
- Moffatt, J.G.; Khorana, H.G. Nucleoside Polyphosphates. X. The Synthesis and Some Reactions of Nucleoside-5′-Phosphoromorpholidates and Related Compounds. Improved Methods for the Preparation of Nucleoside-5′ Polyphosphates. J. Am. Chem. Soc. 1961, 649–658. [Google Scholar] [CrossRef]
- Hong, C.I.; Nechaev, A.; Kirisits, A.J.; Vig, R.; West, C.R.; Manouilov, K.K.; Chu, C.K. Nucleoside Conjugates. 15. Synthesis and Biological Activity of Anti-HIV Nucleoside Conjugates of Ether and Thioether Phospholipids. J. Med. Chem. 1996, 39, 1771–1777. [Google Scholar] [CrossRef]
- Bonnaffe, D.; Dupraz, B.; Ughetto-Monfrin, J.; Namane, A.; Dinh, T.H. Synthesis of acyl pyrophosphates. Application to the synthesis of nucleotide lipophilic prodrugs. Tetrahedron Lett. 1995, 36, 531–534. [Google Scholar] [CrossRef]
- Bonnaffe, D.; Dupraz, B.; Ughetto-Monfrin, J.; Namane, A.; Henin, Y.; Dinh, T.H. Potential Lipophilic Nucleotide Prodrugs: Synthesis, Hydrolysis, and Antiretroviral Activity of AZT and d4T Acyl Nucleotides. J. Org. Chem. 1996, 61, 895–902. [Google Scholar] [CrossRef]
- Ruiz, J.C.; Beadle, J.R.; Aldern, K.A.; Keith, K.A.; Hartline, C.B.; Kern, E.R.; Hostetler, K.Y. Synthesis and antiviral evaluation of alkoxyalkyl-phosphate conjugates of cidofovir and adefovir. Antivir. Res. 2007, 75, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Jessen, H.J.; Schulz, T.; Balzarini, J.; Meier, C. Bioreversible Protection of Nucleoside Diphosphates. Angew. Chem. Int. Ed. 2008, 47, 8719–8722. [Google Scholar] [CrossRef]
- Thomson, W.; Nicholls, D.; Irwin, W.J.; Al-Mushadani, J.S.; Freeman, S.; Karpas, A.; Petrik, J.; Mahmood, N.; Hay, A.J. Synthesis, bioactivation and anti-HIV activity of the bis(4-acyloxybenzyl) and mono(4-acyloxybenzyl) esters of the 5?-monophosphate of AZT. J. Chem. Soc. Perkin Trans. 1 1993, 1, 1239–1245. [Google Scholar] [CrossRef]
- Weinschenk, L.; Schols, D.; Balzarini, J.; Meier, C. Nucleoside Diphosphate Prodrugs: Nonsymmetric DiPPro-Nucleotides. J. Med. Chem. 2015, 58, 6114–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, C. Nucleoside diphosphate and triphosphate prodrugs—An unsolvable task? Antivir. Chem. Chemother. 2017, 25, 69–82. [Google Scholar] [CrossRef]
- Weinschenk, L.; Gollnest, T.; Schols, D.; Balzarini, J.; Meier, C. Bis(benzoyloxybenzyl)-DiPPro Nucleoside Diphosphates of Anti-HIV Active Nucleoside Analogues. ChemMedChem 2015, 10, 891–900. [Google Scholar] [CrossRef]
- Schulz, T.; Balzarini, J.; Meier, C. The DiPPro Approach: Synthesis, Hydrolysis, and Antiviral Activity of Lipophilic d4T Diphosphate Prodrugs. ChemMedChem 2014, 9, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Pertenbreiter, F.; Balzarini, J.; Meier, C. Nucleoside Mono- and Diphosphate Prodrugs of 2′,3′-Dideoxyuridine and 2′,3′-Dideoxy-2′,3′-didehydrouridine. ChemMedChem 2015, 10, 94–106. [Google Scholar] [CrossRef]
- Gollnest, T.; de Oliveira, T.D.; Schols, D.; Balzarini, J.; Meier, C. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals. Nat. Commun. 2015, 6, 8716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weising, S.; Sterrenberg, V.; Schols, D.; Meier, C. Synthesis and Antiviral Evaluation of TriPPPro-AbacavirTP, TriPPProCarbovirTP and their 1′,2′-cis-disubstituted Analogues. ChemMedChem 2018, 13, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Gollnest, T.; de Oliveira, T.D.; Rath, A.; Hauber, I.; Schols, D.; Balzarini, J.; Meier, C. Membrane-permeable Triphosphate Prodrugs of Nucleoside Analogues. Angew. Chem. Int. Ed. 2016, 55, 5255–5258. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, J.; Sobkowski, M.; Stawinski, J.; Kraszewski, A. Studies on aryl H-phosphonates. 1. An efficient method for the preparation of deoxyribo- and ribonucleoside 3′-H-phosphonate monoesters by transesterification of diphenyl H-phosphonate. Tetrahedron Lett. 1994, 35, 3355–3358. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, X.; Schols, D.; Balzarini, J.; Meier, C. γ-Non-Symmetrically Dimasked Tri PPPro Prodrugs as Potential Antiviral Agents against HIV. ChemMedChem 2021, 16, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Schols, D.; Meier, C. Lipophilic Triphosphate Prodrugs of Various Nucleoside Analogues. J. Med. Chem. 2020, 63, 6991–7007. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Schols, D.; Meier, C. Anti-HIV-Active Nucleoside Triphosphate Prodrugs. J. Med. Chem. 2020, 63, 6003–6027. [Google Scholar] [CrossRef]
- Zhao, C.L.; Weber, S.; Schols, D.; Balzarini, J.; Meier, C. Prodrugs of γ-Alkyl-modified Nucleoside Triphosphates Improved Inhibition of HIV Reverse Transcriptase. Angew. Chem. Int. Ed. 2020, 59, 22063–22071. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachwalak, M.; Romanowska, J.; Sobkowski, M.; Stawinski, J. Nucleoside Di- and Triphosphates as a New Generation of Anti-HIV Pronucleotides. Chemical and Biological Aspects. Appl. Sci. 2021, 11, 2248. https://doi.org/10.3390/app11052248
Rachwalak M, Romanowska J, Sobkowski M, Stawinski J. Nucleoside Di- and Triphosphates as a New Generation of Anti-HIV Pronucleotides. Chemical and Biological Aspects. Applied Sciences. 2021; 11(5):2248. https://doi.org/10.3390/app11052248
Chicago/Turabian StyleRachwalak, Marta, Joanna Romanowska, Michal Sobkowski, and Jacek Stawinski. 2021. "Nucleoside Di- and Triphosphates as a New Generation of Anti-HIV Pronucleotides. Chemical and Biological Aspects" Applied Sciences 11, no. 5: 2248. https://doi.org/10.3390/app11052248
APA StyleRachwalak, M., Romanowska, J., Sobkowski, M., & Stawinski, J. (2021). Nucleoside Di- and Triphosphates as a New Generation of Anti-HIV Pronucleotides. Chemical and Biological Aspects. Applied Sciences, 11(5), 2248. https://doi.org/10.3390/app11052248