Multi-Response Optimization of Coagulation and Flocculation of Olive Mill Wastewater: Statistical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Multi-Response Optimization Using GRA
2.4. Grey Relational Generation
3. Results and Discussion
3.1. Coagulation and Flocculation of OMW at Different Coagulant Dosages
3.2. Grey Relational Analysis of Coagulation and Flocculation of OMW
3.2.1. Process of Grey Relational Generation
3.2.2. Deviation Sequence Generation
3.2.3. Grey Relational Coefficient Generation
3.2.4. Grey Relational Grade Generation
3.3. Confirmation Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azzaz, A.A.; Jeguirim, M.; Kinigopoulou, V.; Doulgeris, C.; Goddard, M.L.; Jellali, S.; Matei Ghimbeu, C. Olive mill wastewater: From a pollutant to green fuels, agricultural and water source and bio-fertilizer—Hydrothermal carbonization. Sci. Total Environ. 2020, 733, 139314. [Google Scholar] [CrossRef] [PubMed]
- Vavouraki, A.I.; Zakoura, M.V.; Dareioti, M.A.; Kornaros, M. Biodegradation of Polyphenolic Compounds from Olive Mill Wastewaters (OMW) during Two-Stage Anaerobic Co-Digestion of Agro-Industrial Mixtures. Waste Biomass Valoriz. 2020, 11, 5783–5791. [Google Scholar] [CrossRef]
- Sáez, J.A.; Pérez-Murcia, M.D.; Vico, A.; Martínez-Gallardo, M.R.; Andreu-Rodríguez, F.J.; López, M.J.; Bustamante, M.A.; Sanchez-Hernandez, J.C.; Moreno, J.; Moral, R. Olive mill wastewater-evaporation ponds long term stored: Integrated assessment of in situ bioremediation strategies based on composting and vermicomposting. J. Hazard. Mater. 2021, 402, 123481. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Lofrano, G.; Belgiorno, V. Olive Mill and Winery Wastewaters Pre-Treatment by Coagulation with Chitosan. Sep. Sci. Technol. 2010, 45, 2447–2452. [Google Scholar] [CrossRef]
- Vuppala, S.; Bavasso, I.; Stoller, M.; Di Palma, L.; Vilardi, G. Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: Experimental, modelling and scale-up. J. Clean. Prod. 2019, 236, 117622. [Google Scholar] [CrossRef]
- Gandiwa, B.I.; Moyo, L.B.; Ncube, S.; Mamvura, T.A.; Mguni, L.L.; Hlabangana, N. Optimisation of using a blend of plant based natural and synthetic coagulants for water treatment: (Moringa Oleifera-Cactus Opuntia-alum blend). S. Afr. J. Chem. Eng. 2020, 34, 158–164. [Google Scholar] [CrossRef]
- El Shahawy, A.; Hassan, S.; Ebrahiem, E.E.; El Kersh, I. Organic pollutants removal from olive mill wastewater by coagulation and electrocoagulation: Application of box-behnken design (BBD). Desalin. Water Treat. 2019, 148, 102–118. [Google Scholar] [CrossRef] [Green Version]
- Azbar, N.; Keskin, T.; Catalkaya, E.C. Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems. Biochem. Eng. J. 2008, 38, 379–383. [Google Scholar] [CrossRef]
- Chiavola, A.; Farabegoli, G.; Rolle, E. Combined biological and chemical-physical process for olive mill wastewater treatment. Desalin. Water Treat. 2010, 23, 135–140. [Google Scholar] [CrossRef]
- Frutiger, J.; Jones, M.; Ince, N.G.; Sin, G. From property uncertainties to process simulation uncertainties—Monte Carlo methods in SimSci PRO/II process simulator. In 13 International Symposium on Process Systems Engineering (PSE 2018); Eden, M.R., Ierapetritou, M.G., Towler, G.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1489–1494. [Google Scholar] [CrossRef]
- Javed, S.A.; Khan, A.M.; Dong, W.; Raza, A.; Liu, S. Systems evaluation through new grey relational analysis approach: An application on thermal conductivity-petrophysical parameters’ relationships. Processes 2019, 7, 348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.C.; Tasi, S.L.; Wang, C.C. Machine vision-based gray relational theory applied to IC marking inspection. IEEE Trans. Semicond. Manuf. 2002, 15, 531–539. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Khan, S.; Sarmah, P. Optimization of powder metallurgy processing parameters of Al2O3/Cu composite through Taguchi method with Grey relational analysis. J. King Saud Univ. Eng. Sci. 2020, 32, 274–286. [Google Scholar] [CrossRef]
- Maniyar, K.G.; Ingole, D.S. Multi response optimization of EDM process parameters for aluminium hybrid composites by GRA. Mater. Today Proc. 2018, 5, 19836–19843. [Google Scholar] [CrossRef]
- Kumar Chauhan, N.; Kumar Das, A.; Rajesha, S. Optimization of process parameters using grey relational analysis and taguchi method during micro-EDMing. Mater. Today Proc. 2018, 5, 27178–27184. [Google Scholar] [CrossRef]
- Pandey, A.K.; Gautam, G.D. Grey relational analysis-based genetic algorithm optimization of electrical discharge drilling of Nimonic-90 superalloy. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 117. [Google Scholar] [CrossRef]
- Aslantas, K.; Ekici, E.; Çiçek, A. Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis. Meas. J. Int. Meas. Confed. 2018, 128, 419–427. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Zhao, J.; Chen, Y.; Mo, S.; Gong, Y. Grey relational analysis of an integrated cascade utilization system of geothermal water. Int. J. Green Energy 2016, 13, 14–27. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Huang, X.; Wu, S. Morphological characterization of superfine pulverized coal particles. 1. Fractal characteristics and economic fineness. Energy Fuels 2010, 24, 844–855. [Google Scholar] [CrossRef]
- Siksnelyte, I.; Zavadskas, E.K.; Streimikiene, D.; Sharma, D. An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 2018, 11, 2754. [Google Scholar] [CrossRef] [Green Version]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 2005; ISBN 0875530478/9780875530475. [Google Scholar]
- JagadeeswaraRao, M.; Shaik, R.U.; Buschaiah, K. Grey Relational Analysis of EDM Process Parameters for Incoloy-800. In International Conference on Emerging Trends in Engineering (ICETE); Satapathy, S., Raju, K., Molugaram, K., Krishnaiah, A., Tsihrintzis, G., Eds.; Learning and Analytics in Intelligent Systems; Springer: Cham, Switzerland, 2020; Volume 2. [Google Scholar] [CrossRef]
- Gursoy-Haksevenler, B.H.; Arslan-Alaton, I. Treatment of olive mill wastewater by chemical processes: Effect of acid cracking pretreatment. Water Sci. Technol. 2014, 69, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Papaphilippou, P.C.; Yiannapas, C.; Politi, M.; Daskalaki, V.M.; Michael, C.; Kalogerakis, N.; Mantzavinos, D.; Fatta-Kassinos, D. Sequential coagulation–flocculation, solvent extraction and photo-Fenton oxidation for the valorization and treatment of olive mill effluent. Chem. Eng. J. 2013, 224, 82–88. [Google Scholar] [CrossRef]
- Ertugrul, I.; Oztas, T.; Ozcil, A.; Oztas, G.Z. Grey Relational Analysis Approach in Academic Performance Comparison of University: A Case Study of Turkish Universities. Eur. Sci. J. 2016, 12, 128–139. [Google Scholar] [CrossRef]
Control Factors | Units | Concentration |
---|---|---|
pH | NA | 4.65 |
Turbidity | NTU | 3200 (NTU) |
TOC | mg/L | 3660 (mg/L) |
COD | mg/L | 24,892 (mg/L) |
Phenols | mg/L | 260 (mg/L) |
Experiment | Dosage (mg/L) | TOC% | COD% | Phenols% | Turbidity% |
---|---|---|---|---|---|
1 | 100 | 14.97 | 51.96 | 30.77 | 7.44 |
2 | 200 | 15.36 | 55.71 | 33.85 | 17.97 |
3 | 300 | 18.31 | 59.74 | 36.54 | 37.50 |
4 | 400 | 21.04 | 59.88 | 53.85 | 53.13 |
5 | 500 | 21.12 | 60.21 | 62.31 | 93.81 |
6 | 600 | 23.77 | 64.63 | 65 | 96.31 |
7 | 700 | 22.98 | 63.85 | 66.15 | 94.44 |
8 | 800 | 16.48 | 63.82 | 62.31 | 93.13 |
9 | 900 | 15.60 | 62.69 | 60.77 | 91.69 |
10 | 1000 | 12.92 | 62.56 | 54.62 | 91.25 |
11 | 1500 | 12.54 | 62.24 | 53.08 | 87.84 |
12 | 2000 | 11.80 | 62.22 | 50.38 | 86.88 |
Experiment | TOC | COD | Phenols | Turbidity |
---|---|---|---|---|
1 | 0.2648 | 0 | 0 | 0 |
2 | 0.2968 | 0.2960 | 0.0870 | 0.1185 |
3 | 0.5434 | 0.6142 | 0.1630 | 0.3383 |
4 | 0.7717 | 0.6250 | 0.6522 | 0.5141 |
5 | 0.7785 | 0.6510 | 0.8913 | 0.9719 |
6 | 1.0000 | 1.0000 | 0.9674 | 1.0000 |
7 | 0.9338 | 0.9388 | 1.0000 | 0.9789 |
8 | 0.3904 | 0.9359 | 0.8913 | 0.9641 |
9 | 0.3174 | 0.8471 | 0.8478 | 0.9480 |
10 | 0.0936 | 0.8369 | 0.6739 | 0.9430 |
11 | 0.0616 | 0.8119 | 0.6304 | 0.9047 |
12 | 0 | 0.8096 | 0.5543 | 0.8938 |
Experiment | TOC | COD | Phenols | Turbidity |
---|---|---|---|---|
0 (reference sequence) | 1 | 1 | 1 | 1 |
1 | 0.7352 | 1.0000 | 1.0000 | 1.0000 |
2 | 0.7032 | 0.7040 | 0.9130 | 0.8815 |
3 | 0.4566 | 0.3858 | 0.8370 | 0.6617 |
4 | 0.2283 | 0.3750 | 0.3478 | 0.4859 |
5 | 0.2215 | 0.3490 | 0.1087 | 0.0281 |
6 | 0 | 0 | 0.0326 | 0 |
7 | 0.0662 | 0.0612 | 0 | 0.0211 |
8 | 0.6096 | 0.0641 | 0.1087 | 0.0359 |
9 | 0.6826 | 0.1529 | 0.1522 | 0.0520 |
10 | 0.9064 | 0.1631 | 0.3261 | 0.0570 |
11 | 0.9384 | 0.1881 | 0.3696 | 0.0953 |
12 | 1.0000 | 0.19043 | 0.4457 | 0.1062 |
Experiment | TOC | COD | Phenols | Turbidity |
---|---|---|---|---|
1 | 0.4048 | 0.3333 | 0.3333 | 0.3333 |
2 | 0.4156 | 0.4153 | 0.3538 | 0.3619 |
3 | 0.5227 | 0.5645 | 0.3740 | 0.4304 |
4 | 0.6865 | 0.5714 | 0.5897 | 0.5071 |
5 | 0.6930 | 0.5889 | 0.8214 | 0.9467 |
6 | 1.0000 | 1.0000 | 0.9388 | 1.0000 |
7 | 0.8831 | 0.8909 | 1.0000 | 0.9595 |
8 | 0.4506 | 0.8864 | 0.8214 | 0.9331 |
9 | 0.4228 | 0.7658 | 0.7667 | 0.9057 |
10 | 0.3555 | 0.7541 | 0.6053 | 0.8977 |
11 | 0.3476 | 0.7266 | 0.5750 | 0.8399 |
12 | 0.3333 | 0.7243 | 0.5287 | 0.8248 |
Experiment | TOC | COD | Phenols | Turbidity | GRG | RANK |
---|---|---|---|---|---|---|
1 | 0.4048 | 0.3333 | 0.3333 | 0.3333 | 1.4048 | 12 |
2 | 0.4156 | 0.4153 | 0.3538 | 0.3619 | 1.5466 | 11 |
3 | 0.5227 | 0.5645 | 0.3740 | 0.4304 | 1.8915 | 10 |
4 | 0.6865 | 0.5714 | 0.5897 | 0.5071 | 2.3548 | 9 |
5 | 0.6930 | 0.5889 | 0.8214 | 0.9467 | 3.0501 | 3 |
6 | 1.0000 | 1.0000 | 0.9388 | 1.0000 | 3.9388 | 1 |
7 | 0.8831 | 0.8909 | 1.0000 | 0.9595 | 3.7335 | 2 |
8 | 0.4506 | 0.8864 | 0.8214 | 0.9331 | 3.0915 | 4 |
9 | 0.4228 | 0.7658 | 0.7667 | 0.9057 | 2.8616 | 5 |
10 | 0.3555 | 0.7541 | 0.6053 | 0.8977 | 2.6126 | 6 |
11 | 0.3476 | 0.7266 | 0.5750 | 0.8399 | 2.4892 | 7 |
12 | 0.3333 | 0.7243 | 0.5287 | 0.8248 | 2.4112 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuppala, S.; Shaik, R.U.; Stoller, M. Multi-Response Optimization of Coagulation and Flocculation of Olive Mill Wastewater: Statistical Approach. Appl. Sci. 2021, 11, 2344. https://doi.org/10.3390/app11052344
Vuppala S, Shaik RU, Stoller M. Multi-Response Optimization of Coagulation and Flocculation of Olive Mill Wastewater: Statistical Approach. Applied Sciences. 2021; 11(5):2344. https://doi.org/10.3390/app11052344
Chicago/Turabian StyleVuppala, Srikanth, Riyaaz Uddien Shaik, and Marco Stoller. 2021. "Multi-Response Optimization of Coagulation and Flocculation of Olive Mill Wastewater: Statistical Approach" Applied Sciences 11, no. 5: 2344. https://doi.org/10.3390/app11052344
APA StyleVuppala, S., Shaik, R. U., & Stoller, M. (2021). Multi-Response Optimization of Coagulation and Flocculation of Olive Mill Wastewater: Statistical Approach. Applied Sciences, 11(5), 2344. https://doi.org/10.3390/app11052344