Towards Machine Learning for Error Compensation in Additive Manufacturing
Abstract
:Featured Application
Abstract
1. Introduction
2. Advancements in Additive Manufacturing
2.1. Additive Manufacturing in Industry 4.0
2.2. Transformations from Conventional Manufacturing
3. Data-Driven Modelling in Additive Manufacturing
3.1. Artificial Neural Network Framework
3.2. Markov Decision Process
3.3. Genetic Algorithm
3.4. Genetic Algorithm
4. Error Compensation in Additive Manufacturing
5. Deep Learning for Error Compensation in Additive Manufacturing
5.1. Learning-Based Framework with 3D Deep Learning
- Translation.
- Up-scaling.
- Down-scaling.
- Rotation.
5.2. Long Short-Term Memory for Layer Manufacturing Analytics
5.3. Wear Prediction for Component Production
- Thickness.
- Orientation.
- Raster angle.
- Raster width
- Air gap.
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ioannidou, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I. Deep learning advances in computer vision with 3D data: A survey. ACM Comput. Surv. 2017, 50, 1–38. [Google Scholar] [CrossRef]
- Yang, F.; Lin, F.; Song, C.; Zhou, C.; Jin, Z.; Xu, W. Pbench: A benchmark suite for characterizing 3D printing prefabrication. In Proceedings of the 2016 IEEE International Symposium on Workload Characterization, IISWC 2016, Providence, RI, USA, 25–27 September 2016. [Google Scholar]
- ASTM International. F2792-12a—Standard Terminology for Additive Manufacturing Technologies; ASTM International: West Conshohocken, PA, USA, 2013; ISBN 9781493921126. [Google Scholar]
- Alcisto, J.; Enriquez, A.; Garcia, H.; Hinkson, S.; Steelman, T.; Silverman, E.; Valdovino, P.; Gigerenzer, H.; Foyos, J.; Ogren, J.; et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V. J. Mater. Eng. Perform. 2011, 20, 203–212. [Google Scholar] [CrossRef]
- Petrick, I.J.; Simpson, T.W. Point of View: 3D Printing Disrupts Manufacturing: How Economies of One Create New Rules of Competition. Res. Manag. 2013, 56, 12–16. [Google Scholar] [CrossRef]
- Fok, K.Y.; Cheng, C.T.; Tse, C.K.; Ganganath, N. A relaxation scheme for TSP-based 3D printing path optimizer. In Proceedings of the 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2016, Chengdu, China, 13–15 October 2017; pp. 382–385. [Google Scholar]
- Wu, D.; Thames, J.L.; Rosen, D.W.; Schaefer, D. Enhancing the Product Realization Process with Cloud-Based Design and Manufacturing Systems. J. Comput. Inf. Sci. Eng. 2013. [Google Scholar] [CrossRef]
- Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Kozior, T.; Mamun, A.; Trabelsi, M.; Sabantina, L.; Ehrmann, A. Quality of the surface texture and mechanical properties of FDM printed samples after thermal and chemical treatment. Stroj. Vestn./J. Mech. Eng. 2020, 66, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Fisher, O.; Watson, N.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R.L. Cloud manufacturing as a sustainable process manufacturing route. J. Manuf. Syst. 2018, 47, 53–68. [Google Scholar] [CrossRef]
- Adamson, G.; Wang, L.; Holm, M.; Moore, P. Cloud manufacturing–a critical review of recent development and future trends. Int. J. Comput. Integr. Manuf. 2017, 47, 53–68. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, S.; Sadasivan, C.; Jiao, X. Structural topology optimization for generative design of personalized aneurysm implants: Design, additive manufacturing, and experimental validation. In Proceedings of the 2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, 6–8 November 2017; pp. 9–13. [Google Scholar]
- French, A.; O’Neill, J.; Madson, R.; Kowalewski, T.M. Dynamic additive manufacturing onto free-moving human anatomy via temporal coarse/fine control. In Proceedings of the 2018 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 1–3 March 2018; pp. 1–6. [Google Scholar]
- Török, J.; Pollák, M.; Töröková, M.; Murcinková, Z.; Kociško, M. Monitoring of the impacts of used materials for resulting attributes of an electric motor created via additive technology. TEM J. 2020. [Google Scholar] [CrossRef]
- Torok, J.; Kocisko, M.; Teliskova, M.; Petrus, J.; Paulisin, D. Quality of 3D printed surface based on selected post processor. MM Sci. J. 2018, 6, 2346–2349. [Google Scholar] [CrossRef]
- Novotný, L.; Béreš, M.; de Abreu, H.F.G.; Zajac, J.; Bleck, W. Thermal analysis and phase transformation behaviour during additive manufacturing of Ti–6Al–4V alloy. Mater. Sci. Technol. 2019, 35, 846–855. [Google Scholar] [CrossRef]
- Vasiljević, M.; Manasijević, A.; Kupusinac, A.; Sukić, Ć.; Ivetić, D. One Solution of Component Based Development in NodeJS for Modularization of gRPC Services and Rapid Prototyping. SAR J. 2019, 2, 181–185. [Google Scholar] [CrossRef]
- Sattler, S.W.; Gentili, F.; Teschl, R.; Carceller, C.; Bösch, W. Emerging technologies and concepts for 5G applications—A. making additive manufactured ceramic microwave filters ready for 5G. In Proceedings of the 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, China, 16–19 April 2018; pp. 1–6. [Google Scholar]
- Addamo, G.; Peverini, O.A.; Manfredi, D.; Calignano, F.; Paonessa, F.; Virone, G.; Tascone, R.; Dassano, G. Additive Manufacturing of Ka-Band Dual-Polarization Waveguide Components. IEEE Trans. Microw. Theory Tech. 2018, 66, 3589–3596. [Google Scholar] [CrossRef]
- Villacis, N.; Gualavisi, M.; Narvaez-Munoz, C.; Carrion, L.; Loza-Matovelle, D.; Naranjo, F. Additive Manufacturing of a Rheological Characterized Cement-Based Composite Material. In Proceedings of the 2017 European Conference on Electrical Engineering and Computer Science (EECS), Bern, Switzerland, 17–19 November 2017; pp. 326–331. [Google Scholar]
- Huang, R.; Riddle, M.; Graziano, D.; Warren, J.; Das, S.; Nimbalkar, S.; Cresko, J.; Masanet, E. Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. J. Clean. Prod. 2016, 135, 1559–1570. [Google Scholar] [CrossRef] [Green Version]
- Uhlmann, E.; Kersting, R.; Klein, T.B.; Cruz, M.F.; Borille, A.V. Additive Manufacturing of Titanium Alloy for Aircraft Components. Proc. Procedia CIRP 2015, 35, 55–56. [Google Scholar] [CrossRef]
- Collins, I.L.; Weibel, J.A.; Pan, L.; Garimella, S.V. Experimental Characterization of a Microchannel Heat Sink Made by Additive Manufacturing. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018; pp. 171–177. [Google Scholar]
- Ding, C.; Liu, L.; Mei, Y.; Ngo, K.D.T.; Lu, G.Q. Magnetic paste as feedstock for additive manufacturing of power magnetics. In Proceedings of the Conference Proceedings—IEEE Applied Power Electronics Conference and Exposition—APEC, San Antonio, TX, USA, 4–8 March 2018. [Google Scholar]
- Stoll, T.; Kirstein, M.; Franke, J. Additive Manufacturing of 3D-copper-metallizations on alumina by means of Selective Laser Melting for power electronic applications. In Proceedings of the CIPS 2018, 10th International Conference on Integrated Power Electronics Systems, Stuttgart, Germany, 20–22 March 2018; pp. 1–6. [Google Scholar]
- Sun, J.; Zhou, W.; Huang, D.; Fuh, J.Y.H.; Hong, G.S. An Overview of 3D Printing Technologies for Food Fabrication. Food Bioprocess Technol. 2015, 8, 1605–1615. [Google Scholar] [CrossRef]
- O’Brien, M. Existing standards as the framework to qualify additive manufacturing of metals. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–10. [Google Scholar]
- Dietz, A.; van der Veen, E.; Rauch, B.; Schlitt, R. Surface technology for polymer parts for space applications made by additive manufacturing. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–6. [Google Scholar]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Mellor, S.; Hao, L.; Zhang, D. Additive manufacturing: A framework for implementation. Int. J. Prod. Econ. 2014, 149, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Wohlers, T.; Caffrey, T. Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report; Wohlers Associates: Fort Collins, CO, USA, 2014; ISBN 9780991333219. [Google Scholar]
- Rayna, T.; Striukova, L. From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol. Forecast. Soc. Change 2016, 102, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Mohr, S.; Khan, O. 3D Printing and Its Disruptive Impacts on Supply Chains of the Future. Technol. Innov. Manag. Rev. 2015, 5, 20. [Google Scholar] [CrossRef]
- Gebler, M.; Schoot Uiterkamp, A.J.M.; Visser, C. A global sustainability perspective on 3D printing technologies. Energy Policy. 2014, 74, 158–167. [Google Scholar] [CrossRef]
- Ford, S.L.N. Additive manufacturing technology: Potential implications for US manufacturing competitiveness. J. Int. Commer. Econ. 2014, 6, 40. [Google Scholar]
- Conner, B.P.; Manogharan, G.P.; Martof, A.N.; Rodomsky, L.M.; Rodomsky, C.M.; Jordan, D.C.; Limperos, J.W. Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit. Manuf. 2014, 1, 64–76. [Google Scholar] [CrossRef]
- Lu, B.; Li, D.; Tian, X. Development Trends in Additive Manufacturing and 3D Printing. Engineering 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Wooten, J.R. System for Rapid Manufacturing of Replacement Aerospace Parts. U.S. Patent No. 6,839,607, 4 January 2005. [Google Scholar]
- Horvath, J. Mastering 3D Printing; Apress: Berkeley, CA, USA, 2014; ISBN 148420025X. [Google Scholar]
- Zopf, D.A.; Hollister, S.J.; Nelson, M.E.; Ohye, R.G.; Green, G.E. Bioresorbable Airway Splint Created with a Three-Dimensional Printer. N. Engl. J. Med. 2013, 21, 2043–2045. [Google Scholar] [CrossRef]
- Jahan, S.A.; El-Mounayri, H. Optimal Conformal Cooling Channels in 3D Printed Dies for Plastic Injection Molding. Procedia Manuf. 2016, 5, 888–900. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.F.; Wu, J.R.; Liu, B.H.; Wei, W.C.J.; Wang, A.B.; Luo, R.C. Improved contact lens injection molding production by 3D printed conformal cooling channels. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (SII), Taipei, China, 11–14 December 2017; pp. 89–94. [Google Scholar]
- Wang, L.; Gardner, D.J.; Bousfield, D.W. Cellulose nanofibril-reinforced polypropylene composites for material extrusion: Rheological properties. Polym. Eng. Sci. 2018, 58, 793–801. [Google Scholar] [CrossRef]
- Seppala, J.E.; Han, S.H.; Hillgartner, K.E.; Davis, C.S.; Migler, K.B. Weld formation during material extrusion additive manufacturing. Soft Matter. 2017, 13, 6761–6769. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Reyes, E.I.; Moon, K.-s.; Rumpf, R.C.; Kim, N.S. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. J. Electron. Mater. 2015, 44, 771–777. [Google Scholar] [CrossRef]
- Bidare, P.; Bitharas, I.; Ward, R.M.; Attallah, M.M.; Moore, A.J. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018, 142, 107–120. [Google Scholar] [CrossRef]
- Uddin, S.Z.; Murr, L.E.; Terrazas, C.A.; Morton, P.; Roberson, D.A.; Wicker, R.B. Processing and Characterization of Crack-Free Aluminum 6061 Using High-Temperature Heating in Laser Powder Bed Fusion Additive Manufacturing. Addit. Manuf. 2018, 22, 405–415. [Google Scholar] [CrossRef]
- Zhu, W.; Yan, C.; Shi, Y.; Wen, S.; Liu, J.; Wei, Q.; Shi, Y. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N.; Shindo, P.W.; Medina, F.R.; Wicker, R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol. 2012, 28, 1–14. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y.; Wiria, F.E.; Tay, B.Y.; Zhao, Z.; Zhao, L.; Tian, Z.; Yang, S. Direct selective laser sintering and melting of ceramics: A review. Rapid Prototyp. J. 2017, 23, 611–623. [Google Scholar] [CrossRef]
- Sridharan, N.; Cakmak, E.; List, F.A.; Ucar, H.; Constantinides, S.; Babu, S.S.; McCall, S.K.; Paranthaman, M.P. Rationalization of solidification mechanism of Nd–Fe–B magnets during laser directed-energy deposition. J. Mater. Sci. 2018, 53, 8619–8626. [Google Scholar] [CrossRef]
- MacDonald, B.E.; Haley, J.C.; Schoenung, J.M. Reuse of Powder Feedstock for Directed Energy Deposition. Powder Technol. 2018, 338, 819–829. [Google Scholar] [CrossRef]
- Mostafaei, A.; Stevens, E.L.; Ference, J.J.; Schmidt, D.E.; Chmielus, M. Binder jetting of a complex-shaped metal partial denture framework. Addit. Manuf. 2018, 21, 63–68. [Google Scholar] [CrossRef]
- Bai, Y.; Williams, C.B. Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater. Des. 2018, 147, 146–156. [Google Scholar] [CrossRef]
- Vu, I.Q.; Bass, L.B.; Williams, C.B.; Dillard, D.A. Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing. Addit. Manuf. 2018, 22, 447–461. [Google Scholar] [CrossRef]
- Yap, Y.L.; Wang, C.; Sing, S.L.; Dikshit, V.; Yeong, W.Y.; Wei, J. Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis. Eng. 2017, 50, 275–285. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Li, M.-R. Development of sheet metal forming dies with excellent mechanical properties using additive manufacturing and rapid tooling technologies. Int. J. Adv. Manuf. Technol. 2017, 90, 21–25. [Google Scholar] [CrossRef]
- Thrasher, C. Advanced Methods and Materials for Vat Photopolymerization Additive Manufacturing. Master’s Thesis, University of Washington, Seattle, WA, USA, 2017. [Google Scholar]
- Davoudinejad, A.; Pedersen, D.B.; Tosello, G. Evaluation of polymer micro parts produced by additive manufacturing processes by using vat photopolymerization method. In Proceedings of the Joint Special Interest Group Meeting between Euspen and ASPE Dimensional Accuracy and Surface Finish in Additive Manufacturing, Leuven, Belgium, 10–11 October 2017. [Google Scholar]
- Lehtinen, P.; Kaivola, M.; Partanen, J. Absorption cross-sections of Disperse Orange 13 and Irgacure 784 determined with mask projection vat photopolymerization. Addit. Manuf. 2018, 22, 286–289. [Google Scholar] [CrossRef]
- Mierzejewska, Z.A.; Hudák, R.; Sidun, J. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications. Materials 2019, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Dupláková, D.; Hatala, M.; Duplák, J.; Radchenko, S.; Steranka, J. Direct metal laser sintering–Possibility of application in production process. Sci. Res. J. 2018, 1, 123–127. [Google Scholar] [CrossRef]
- Tocci, M.; Pola, A.; Girelli, L.; Lollio, F.; Montesano, L.; Gelfi, M. Wear and cavitation erosion resistance of an ALMgSC alloy produced by DMLS. Metals 2019, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Zawadzki, P.; Zywicki, K. Smart product design and production control for effective mass customization in the industry 4.0 concept. Manag. Prod. Eng. Rev. 2016, 7. [Google Scholar] [CrossRef]
- Kumar, A. Methods and Materials for Smart Manufacturing: Additive Manufacturing, Internet of Things, Flexible Sensors and Soft Robotics. Manuf. Lett. 2018, 15, 122–125. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Thames, L.; Schaefer, D. Software-defined Cloud Manufacturing for Industry 4.0. Procedia CIRP 2016, 52, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Eyers, D.R.; Potter, A.T.; Gosling, J.; Naim, M.M. The flexibility of industrial additive manufacturing systems. Int. J. Oper. Prod. Manag. 2018, 38, 2313–2343. [Google Scholar] [CrossRef] [Green Version]
- Kitayama, S.; Miyakawa, H.; Takano, M.; Aiba, S. Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel. Int. J. Adv. Manuf. Technol. 2017, 88, 1735–1744. [Google Scholar] [CrossRef]
- Bhushan, B.; Caspers, M. An overview of additive manufacturing (3D printing) for microfabrication. Microsyst. Technol. 2017, 23, 1117–1124. [Google Scholar] [CrossRef]
- Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A. Materials for additive manufacturing. CIRP Ann. 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Lušić, M.; Barabanov, A.; Morina, D.; Feuerstein, F.; Hornfeck, R. Towards Zero Waste in Additive Manufacturing: A Case Study Investigating one Pressurised Rapid Tooling Mould to Ensure Resource Efficiency. Procedia CIRP 2015, 37, 54–58. [Google Scholar] [CrossRef]
- Desai, P.M.; Puri, V.; Brancazio, D.; Halkude, B.S.; Hartman, J.E.; Wahane, A.V.; Martinez, A.R.; Jensen, K.D.; Harinath, E.; Braatz, R.D.; et al. Tablet coating by injection molding technology—Optimization of coating formulation attributes and coating process parameters. Eur. J. Pharm. Biopharm. 2018, 122, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.R.; Rossie, K.E.; Gutowski, T.G. The energy requirements and environmental impacts of sheet metal forming: An analysis of five forming processes. J. Mater. Process. Technol. 2017, 244, 116–135. [Google Scholar] [CrossRef] [Green Version]
- Bogers, M.; Hadar, R.; Bilberg, A. Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing. Technol. Forecast. Soc. Change 2016, 102, 225–239. [Google Scholar] [CrossRef]
- Secor, E.B. Principles of aerosol jet printing. Flex. Print. Electron. 2018, 3, 035002. [Google Scholar] [CrossRef]
- Seifert, T.; Sowade, E.; Roscher, F.; Wiemer, M.; Gessner, T.; Baumann, R.R. Additive manufacturing technologies compared: Morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 2015, 54, 769–779. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, D.; Wang, L.; Li, L. Data driven production runtime energy control of manufacturing systems. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 243–248. [Google Scholar]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Wimpenny, D.I.; Pandey, P.M.; Jyothish Kumar, L. Advances in 3D Printing & Additive Manufacturing Technologies; Springer: Singapore, 2016; ISBN 9789811008122. [Google Scholar]
- Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst. 2018. [Google Scholar] [CrossRef]
- Lee, W.J.; Wu, H.; Yun, H.; Kim, H.; Jun, M.B.G.; Sutherland, J.W. Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP 2019, 80, 506–511. [Google Scholar] [CrossRef]
- Chowdhury, S.; Anand, S. Artificial neural network based geometric compensation for thermal deformation in additive manufacturing processes. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016, Blacksburg, VA, USA, 27 June–1 July 2016. [Google Scholar]
- Buscema, P.M.; Massini, G.; Breda, M.; Lodwick, W.A.; Newman, F.; Asadi-Zeydabadi, M. Artificial neural networks. In Studies in Systems, Decision and Control; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Comput. (Long Beach Calif.) 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Kuri-Morales, A.F. The best neural network architecture. In Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Tuxtla Gutiérrez, Mexico, 16–22 November 2014; pp. 72–84. [Google Scholar]
- Raghunath, N.; Pandey, P.M. Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int. J. Mach. Tools Manuf. 2007. [Google Scholar] [CrossRef]
- Tong, K.; Joshi, S.; Lehtihet, E.A. Error compensation for fused deposition modeling (FDM) machine by correcting slice files. Rapid Prototyp. J. 2008. [Google Scholar] [CrossRef]
- Yao, B.; Imani, F.; Yang, H. Markov Decision Process for Image-Guided Additive Manufacturing. IEEE Robot. Autom. Lett. 2018, 3, 2792–2798. [Google Scholar] [CrossRef]
- Littman, M.L. Markov Decision Processes. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780080970875. [Google Scholar]
- Kariya, T. A robustness property of Hotelling’s T2-test. Ann. Stat. 1981, 9, 211–214. [Google Scholar] [CrossRef]
- Chou, Y.; Mason, R.L.; Young, J.C. Power comparisons for a Hotelling’s T2 statistic. Commun. Stat. Comput. 1999, 28, 1031–1050. [Google Scholar] [CrossRef]
- Stender, M.E.; Beghini, L.L.; Sugar, J.D.; Veilleux, M.G.; Subia, S.R.; Smith, T.R.; San Marchi, C.W.; Brown, A.A.; Dagel, D.J. A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Addit. Manuf. 2018, 21, 556–566. [Google Scholar] [CrossRef] [Green Version]
- Deibler, L.; Brown, A.; Puskar, J. Experiments and modeling to characterize microstructure and hardness in 304L. Metallogr. Microstruct. Anal. 2017, 6, 3–11. [Google Scholar] [CrossRef]
- Rodgers, T.M.; Madison, J.D.; Tikare, V. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput. Mater. Sci. 2017. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Garg, A.; Tai, K.; Savalani, M.M. Formulation of bead width model of an SLM prototype using modified multi-gene genetic programming approach. Int. J. Adv. Manuf. Technol. 2014, 73, 375–388. [Google Scholar] [CrossRef]
- Kramer, O. Genetic Algorithm Essentials; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-52155-8. [Google Scholar]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Analytical modelling and optimization of the temperature-dependent dynamic mechanical properties of fused deposition fabricated parts made of PC-ABS. Materials 2016, 9, 895. [Google Scholar] [CrossRef] [Green Version]
- Tapia, G.; Elwany, A.H.; Sang, H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit. Manuf. 2016, 12, 282–290. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Verrelst, J.; Munoz-Mari, J.; Laparra, V.; Mateo-Jimenez, F.; Gomez-Dans, J. A survey on Gaussian processes for earth-observation data analysis: A comprehensive investigation. IEEE Geosci. Remote Sens. Mag. 2016, 4, 58–78. [Google Scholar] [CrossRef] [Green Version]
- Kleijnen, J.P.C.; Beers, W.C.M. van Application-driven sequential designs for simulation experiments: Kriging metamodelling. J. Oper. Res. Soc. 2004, 55, 876–883. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, Y.; Huang, T.; Ma, H. Prescribed Performance Cooperative Control for Multiagent Systems with Input Quantization. IEEE Trans. Cybern. 2020, 50, 1810–1819. [Google Scholar] [CrossRef]
- Huang, Q.; Nouri, H.; Xu, K.; Chen, Y.; Sosina, S.; Dasgupta, T. Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products. J. Manuf. Sci. Eng. 2014, 136, 061008. [Google Scholar] [CrossRef]
- Bochmann, L.; Bayley, C.; Helu, M.; Transchel, R.; Wegener, K.; Dornfeld, D. Understanding error generation in fused deposition modeling. Surf. Topogr. Metrol. Prop. 2015, 3, 014002. [Google Scholar] [CrossRef]
- Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T. Mitigation of thermal distortion during additive manufacturing. Scr. Mater. 2017, 127, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Chandran, R.; Samant, R.; Anand, S. Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures. Procedia Manuf. 2015, 1, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.; Anand, S. A combined energy and error optimization method for metal powder based additive manufacturing processes. Rapid Prototyp. J. 2015, 21, 301–312. [Google Scholar] [CrossRef]
- Pinto, J.M.; Arrieta, C.; Andia, M.E.; Uribe, S.; Ramos-Grez, J.; Vargas, A.; Irarrazaval, P.; Tejos, C. Sensitivity analysis of geometric errors in additive manufacturing medical models. Med. Eng. Phys. 2015, 37, 328–334. [Google Scholar] [CrossRef]
- Huotilainen, E.; Jaanimets, R.; Valášek, J.; Marcián, P.; Salmi, M.; Tuomi, J.; Mäkitie, A.; Wolff, J. Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. J. Cranio Maxillofac. Surg. 2014, 42, 259–265. [Google Scholar] [CrossRef]
- Zhu, Z.; Anwer, N.; Huang, Q.; Mathieu, L. Machine learning in tolerancing for additive manufacturing. CIRP Ann. 2018, 67, 157–160. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Gao, R.X. Modeling of layer-wise additive manufacturing for part quality prediction. Procedia Manuf. 2018, 16, 155–162. [Google Scholar] [CrossRef]
- Irwansyah; Redyarsa, D.B.; Lai, J.Y.; Essomba, T.; Lee, P.Y. Detecting and removing overlap meshes for the assembly of 3D-printed fractured bones. In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018; pp. 362–365. [Google Scholar]
- Ahn, S.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Brinson, H.F.; Brinson, L.C. Polymer Engineering Science and Viscoelasticity; Springer: New York, NY, USA, 2015; ISBN 978-1-4899-7484-6. [Google Scholar]
- Tymrak, B.M.; Kreiger, M.; Pearce, J.M. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 2014, 58, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Love, L.J.; Kunc, V.; Rios, O.; Duty, C.E.; Elliott, A.M.; Post, B.K.; Smith, R.J.; Blue, C.A. The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res. 2014, 29, 1893–1898. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Li, Y.; Song, W.; Yee, K.; Lee, K.Y.; Tagarielli, V.L. Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 2017, 123, 154–164. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Ou, Y. Online Gaussian process regression for time-varying manufacturing systems. In Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 10–12 December 2014; pp. 1118–1123. [Google Scholar]
- Tapia, G.; Khairallah, S.; Matthews, M.; King, W.E.; Elwany, A. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int. J. Adv. Manuf. Technol. 2018, 94, 3591–3603. [Google Scholar] [CrossRef]
- Shen, Z.; Shang, X.; Zhao, M.; Dong, X.; Xiong, G.; Wang, F. A Learning-Based Framework for Error Compensation in 3-D Printing. IEEE Trans. Cybern. 2019, 49, 4042–4050. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016), Athens, Greece, 17–21 October 2016; pp. 424–432. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical image computing and computer-assisted intervention (MICCAI 2015), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Galantucci, L.M.; Lavecchia, F.; Percoco, G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann. Manuf. Technol. 2009, 58, 189–192. [Google Scholar] [CrossRef]
- Wang, T.M.; Xi, J.T.; Jin, Y. A model research for prototype warp deformation in the FDM process. Int. J. Adv. Manuf. Technol. 2007, 33, 1087–1096. [Google Scholar] [CrossRef]
- Pan, J.S.; Lu, K.; Chen, S.H.; Yan, L. Modern Advances in Applied Intelligence; Springer: New York, NY, USA, 2014; ISBN 978-3-319-07454-2. [Google Scholar]
- Vijayaraghavan, V.; Garg, A.; Lam, J.S.L.; Panda, B.; Mahapatra, S.S. Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. Int. J. Adv. Manuf. Technol. 2015, 78, 781–793. [Google Scholar] [CrossRef]
- Koza, J.R. Survey of genetic algorithms and genetic programming. In Proceedings of the WESCON’95, San Francisco, CA, USA, 7–9 November 1995; pp. 589–594. [Google Scholar]
- Rehnberg, M.; Ponte, S. From smiling to smirking? 3D printing, upgrading and the restructuring of global value chains. Glob. Netw. 2018. [Google Scholar] [CrossRef]
- Ituarte, I.F.; Salmi, M.; Ballardini, R.M.; Tuomi, J.; Partanen, J. Additive Manufacturing in Finland: Recommendations for a Renewed Innovation Policy. Physics Procedia 2017, 18, 57–80. [Google Scholar] [CrossRef]
- Tech, R.P.G.; Ferdinand, J.-P.; Dopfer, M. Open-Source Hardware Startups and Their Communities. In The Decentralized and Networked Future of Value Creation; Springer International Publishing: Cham, Switzerland, 2016; pp. 129–145. ISBN 978-3-319-31686-4. [Google Scholar]
- Nilsiam, Y.; Pearce, J.M. Free and Open Source 3-D Model Customizer for Websites to Democratize Design with OpenSCAD. Designs 2017, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Weise, T. Global Optimization Algorithms–Theory and Application. Available online: http//www.it-weise.de (accessed on 10 August 2020).
- Savastano, M.; Amendola, C.; D’Ascenzo, F.; Massaroni, E. 3-D printing in the spare parts supply chain: An explorative study in the automotive industry. In Digitally Supported Innovation; Springer: Berlin/Heidelberg, Germany, 2016; Volume 18, pp. 153–170. ISBN 978-3-319-40265-9. [Google Scholar]
- Cai, H. Application of 3D printing in orthopedics: Status quo and opportunities in China. Ann. Transl. Med. 2015, 3, 1–3. [Google Scholar] [CrossRef]
- Roca, J.B.; Vaishnav, P.; Fuchs, E.R.H.; Morgan, M.G. Policy needed for additive manufacturing. Nat. Mater. 2016, 15, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Leng, J.; Ding, K. Social manufacturing: A survey of the state-of-the-art and future challenges. In Proceedings of the 2016 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2016, Beijing, China, 10–12 July 2016; pp. 12–17. [Google Scholar]
- Bey, N.; Hauschild, M.Z.; McAloone, T.C. Drivers and barriers for implementation of environmental strategies in manufacturing companies. CIRP Ann. Manuf. Technol. 2013, 62, 43–46. [Google Scholar] [CrossRef]
- Hamalainen, M.; Karjalainen, J. Social manufacturing: When the maker movement meets interfirm production networks. Bus. Horiz. 2017, 60, 795–805. [Google Scholar] [CrossRef]
- Schaefer, D.; Lane Thames, J.; Wellman, R.D.; Wu, D.; Rosen, D.W. Distributed collaborative design and manufacture in the cloud-motivation, infrastructure, and education. Comput. Educ. J. 2012, 3, 1. [Google Scholar] [CrossRef]
- Wu, D.; Greer, M.J.; Rosen, D.W.; Schaefer, D. Cloud Manufacturing: Drivers, Current Status, and Future Trends. In Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference (MSEC 2013), Madison, WI, USA, 10–14 June 2013. [Google Scholar]
- Wang, W.; Wang, Y.; Williams, W.; Browne, A. Secure Cloud Manufacturing: Research Challenges and a Case Study. In Proceedings of the IFIP Workshop on Emerging Ideas and Trends in Engineering of Cyber-Physical Systems (EITEC’15), Seattle, WA, USA, 13 April 2015. [Google Scholar]
- Tao, F.; Zhang, L.; Venkatesh, V.C.; Luo, Y.; Cheng, Y. Cloud manufacturing: A computing and service-oriented manufacturing model. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 1969–1976. [Google Scholar] [CrossRef]
Method | Description | Material(s) | Technology |
---|---|---|---|
Material extrusion [43,44] | Molten material is selectively dispensed through a nozzle or orifice |
|
|
Powder bed fusion [46,47] | Thermal energy selectively fuses regions of a powder bed |
| |
Direct energy deposition [51,52] | Focused thermal energy is used to fuse materials by melting as the material is being deposited |
|
|
Binder jetting [53,54] | Liquid based bonding agent is selectively deposited to join powder materials |
|
|
Material jetting [55,56] | Droplets of build material are selectively deposited |
|
|
Sheet lamination [57] | Sheets of material are bonded to form an object |
|
|
VAT photo polymerization [58,59,60] | Liquid photopolymer in a vat is selectively cured by light-activated polymerisation |
|
|
Manufacturing Type | Additive Manufacturing | Traditional Manufacturing |
---|---|---|
Advantages |
|
|
Drawbacks |
|
|
Challenges | Details |
---|---|
From Time-Triggered to Event-Triggered Control Systems |
|
A Unified Data Model: Data Sharing, Not Just Data Exchange |
|
The Integration of Legacy Systems |
|
Security Challenges |
|
Method | Major Finding(s) | Potential Improvement(s) | Type of AM | Manufacturing Task(s) |
---|---|---|---|---|
Artificial Neural Network [83] | Pre-defined tolerances are applied to the extremities of the bounding box to account for part deformations. | Surface data from manufactured AM prototypes extracted using 3D scanning techniques may be used for creating the training datasets for the ANN. Additional intermediate steps will also be needed to refine the data from 3D scans. | Material Extrusion | Quality assurance |
Markov Decision Process [89,95] | The optimal policy derived from the proposed MDP framework yields the smallest expected total cost under different cost ratios since corrective action is conducted only when the defect signal is beyond the upper limit. | Simple algorithm could be introduced to further reduce the number of updates where graph partitioning method can be included. | Powder Bed Fusion | Process monitoring and optimal control |
Genetic Algorithm [98] | Focused on the study of the bead width of an Al-powder-based fabricated prototype in the SLM process subjected to a continuous laser power mode. | Other vital characteristics such as surface roughness, waviness, and bead width using a pulse laser mode in the SLM to identify and evaluate any differences. | Selective Laser Melting | Optimal control |
Gaussian Process [101] | Metal-based AM is characterized by low repeatability due to the complexity of the underlying physical transformations that take place during fabrication, the proposed method offers a systematic approach that enhances the determination of these parameter settings while keeping the number of experiments to a minimum. | Generalizing the model to a higher dimensional space accounting for additional SLM processing parameters (e.g., hatch distance, layer thickness, among others) and considering the effect of the characteristics of the raw powder (e.g., powder morphology, particle size distribution, fabrication procedure) on the part porosity. | Selective Laser Melting | Optimal control and quality assurance |
Error Compensation Method | Approach | Major Finding(s) |
---|---|---|
Learning-Based Framework with 3D Deep Learning [123] | Four deformation parameters are used to estimate finishing errors presented by the means of voxelised representation of dental crown adapting U-net auto encoder. | Inverse deformation approximate performance is proven to be able to compensate the changes from the nominal model used in the tests solely from the voxel representation of STL form of the 3D model. |
Long Short-Term Memory for Layer Manufacturing Analytics [113] | Temperature and vibration data are collected to estimate process variations adapting Long Short-term Memory network. | Inverse deformation approximate performance is proven to be able to compensate the changes from the nominal model used in the tests solely from the voxel representation of STL form of the 3D model. |
Wear Prediction for Component Production [129] | Difference in height product with its cross-sectional area is used to calculate the wear volume adapting. Improved approach of Multi-gene Genetic Programming. | Robustness of the model is validated by unveiling dominant input parameters and hidden non-linear relationships. Wear strength decreases as layer thickness and air gap decreases. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omairi, A.; Ismail, Z.H. Towards Machine Learning for Error Compensation in Additive Manufacturing. Appl. Sci. 2021, 11, 2375. https://doi.org/10.3390/app11052375
Omairi A, Ismail ZH. Towards Machine Learning for Error Compensation in Additive Manufacturing. Applied Sciences. 2021; 11(5):2375. https://doi.org/10.3390/app11052375
Chicago/Turabian StyleOmairi, Amzar, and Zool Hilmi Ismail. 2021. "Towards Machine Learning for Error Compensation in Additive Manufacturing" Applied Sciences 11, no. 5: 2375. https://doi.org/10.3390/app11052375
APA StyleOmairi, A., & Ismail, Z. H. (2021). Towards Machine Learning for Error Compensation in Additive Manufacturing. Applied Sciences, 11(5), 2375. https://doi.org/10.3390/app11052375