Sustainable Management of Water Resources in Supplementary Irrigation Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Soil Description
2.2. Measuring Soil Water Content
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; pp. 161–162. [Google Scholar]
- Weil, R.P.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Educ.: Harlow, UK, 2017; pp. 2013–2217. [Google Scholar]
- Kirkham, M.B. Principles of Soil and Plant Water Relations, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 87–101. [Google Scholar]
- Jiang, P.; Newell, R.K.; Anderson, S.H.; Sadler, E.J.; Sudduth, K.A. Estimating Plant-Available Water Using the Simple Inverse Yield Model for Claypan Landscapes. Agron. J. 2008, 100, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Brevik, E. Evaluation of the FieldScout TDR300 for Determining Volumetric Water Content in Sandy South Georgia Soils. Soil Horiz. 2012, 53, 27–30. [Google Scholar] [CrossRef]
- Jabro, J.D.; Evans, R.G.; Kim, Y.; Iversen, W.M. Estimating in situ soil–water retention and field water capacity in two contrasting soil textures. Irrig. Sci. 2008, 27, 223–229. [Google Scholar] [CrossRef]
- Kirkham, M.B. Principles of Soil and Plant Water Relations; Elsevier Academic Press: Burlington, MA, USA, 2004; pp. 153–161. [Google Scholar]
- Chow, L.; Xing, Z.; Rees, H.W.; Meng, F.; Monteith, J.; Stevens, L. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region. Can. Sens. 2009, 9, 9398–9413. [Google Scholar] [CrossRef]
- Plauborg, F.; Iversen, B.V.; Laerke, P.E. In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils. Vadose Zone J. 2005, 4, 1037–1047. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Agüera, T.; Valdez, L.C.; Fernández, M.D. Evaluation of the Watermark sensor for use with drip irrigated vegetable crops. Irrig. Sci. 2006, 24, 185–202. [Google Scholar] [CrossRef]
- Girisha, K.G.; Zhuping, S.; Clark, J.A. Soil Salinity and Sodicity Appraisal by Electromagnetic Induction in Irrigated Cotton Soils. Land Degrad. Dev. 2014, 25, 228–235. [Google Scholar]
- Marković, M.; Filipović, V.; Legović, T.; Josipović, M.; Tadić, V. Evaluation of Different Soil Water Potential by Field Capacity Threshold in Combination with a Triggered Irrigation Module. SWR 2015, 10, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Leib, B.G.; Jabro, J.D.; Mathews, G.R. Field evaluation and performance comparison of soil moisture sensors. Soil Sci. 2003, 168, 396–408. [Google Scholar] [CrossRef]
- Irmak, S.; Payero, O.J.; Eisenhauer, E.D.; Kranz, L.W.; Martin, L.D.; Zoubek, L.G.; Rees, M.J.; VanDe Walle, B.; Christiansen, P.A.; Leininer, D. Watermark Granular Matrix Sensor to Measure Soil Metric Potential for Irrigation Management; Institute of Agriculture and Natural Resources at the University of Nebraska: Lincoln, Nebraska, 2006; Available online: https://lancaster.unl.edu/ag/Crops/Watermark_Sensor.pdf (accessed on 15 August 2019).
- Ganjegunte, K.G.; Sheng, Z.; Clark, J.A. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Appl. Water Sci. 2016, 2, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Cao, Q.; Sun, Z. The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrol. Process. 2003, 17, 3601–3614. [Google Scholar] [CrossRef]
- Reeves, T.L.; Smith, M.A. Time domain reflectometry for measuring soil water content in range surveys. J. Range Manag. 1992, 45, 412–414. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Jury, W.A.; Gardner, W.R.; Gardner, W.H. Soil Physics, 5th ed.; John Wiley & Sons, INC: New York, NY, USA, 1991; p. 47. [Google Scholar]
- Chandler, D.G.; Seyfried, M.; Murdock, M.; McNamara, J. Field Calibration of Water Content Reflectometers. Soil Sci. Soc. Am. J. 2004, 68, 1–9. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report, Update 2014; FAO: Rome, Italy, 2014; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 4 September 2020).
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Climate Atlas of Croatia 1961–1990, 1971–2000; Meteorological and Hydrological Service of Croatia: Zagreb, Croatia, 2008.
- Škorić, A.; Filipovski, G.; Ćirić, M.; Vuković, T. Klasifikacija Zemljišta Jugoslavije; Academy of Sciences and Arts of Bosnia and Herzegovina: Sarajevo, Bosnia and Herzegovina, 1985. [Google Scholar]
- FAO. Soil and Plant Testing and Analysis; FAO Soils Bulletin 38/1; FAO: Rome, Italy, 1977; Available online: http://www.fao.org/3/ar117e/ar117e.pdf (accessed on 29 July 2019).
- Škorić, A. Priručnik za Pedološka Istraživanja; Sveučilište u Zagrebu: Zagreb, Croatia, 1986. [Google Scholar]
- Bittelli, M. Measuring Soil Water Content: A Review. Horttechnology 2011, 21, 293–300. [Google Scholar] [CrossRef]
- Cai, G.; Vanderborght, J.; Klotzsche, A.; van der Kruk, J.; Neumann, J.; Hermes, N.; Vereecken, H. Construction of Minirhizotron Facilities for Investigating Root Zone Processes. Vadose Zone J. 2016, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Evett, S.R.; Heng, L.K.; Moutonnet, P.; Nguyen, M.L. Field Estimation of Soil Water Content; International Atomic Energy Agency: Vienna, Austria, 2008; pp. 123–129. Available online: https://www-pub.iaea.org/MTCD/publications/PDF/TCS-30_web.pdf (accessed on 27 June 2019).
- Muñoz-Carpena, R.; Shukla, S.; Morgan, K. Field Devices for Monitoring Soil Water Content; USDA: Washington, DC, USA, 2004; pp. 1–24. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.6862&rep=rep1&type=pdf (accessed on 2 May 2019).
- Ma, Y.; Qu, L.; Wang, W.; Yang, X.; Lei, T. Measuring soil water content through volume/mass replacement using a constant volume container. Geoderma 2016, 271, 42–49. [Google Scholar] [CrossRef]
- Abbas, F.; Fares, A.; Fares, S. Field calibrations of soil moisture sensors in a forested watershed. Sensors 2011, 11, 6354–6369. [Google Scholar] [CrossRef] [Green Version]
- Milly, O.C.D. A simulation analysis of thermal effects on evaporation from soil. Water Resour. Res. 1984, 20, 1087–1098. [Google Scholar] [CrossRef]
- Addicott, T.M.; Whitmore, A.P. Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J. Agric. Sci. 1987, 109, 141–157. [Google Scholar] [CrossRef]
- McCann, I.R.; Kincaid, D.C.; Wang, D. Operational characteristics of the watermark model 200 soil water potential sensor for irrigation management. Appl. Eng. Agric. 1992, 8, 603–609. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Continuous measurement of a plant and soil water status for irrigation scheduling in plum. Irrig. Sci. 2004, 23, 93–102. [Google Scholar] [CrossRef]
- Dukes, M.D.; Scholberg, J.M. Soil moisture controlled subsurface drip irrigation on sandy soils. Appl. Eng. Agric. 2005, 21, 89–101. [Google Scholar] [CrossRef]
- Patel, R.J.; Rank, H.D. Performance analysis of electrical resistance based granular matrix sensors for measuring soil water potential in clay loam soil. Agres 2016, 5, 313–319. [Google Scholar]
- Abdullah, N.H.H.; Kuan, N.W.; Ibrahim, A.; Ismail, B.N.; Majid, M.R.A.; Ramli, R.; Mansor, N.S. Determination of soil water content using time domain reflectometer (TDR) for clayey soil. In Advances in Civil Engineering and Science Technology, Proceedings of the AIP Conference 2020, Penang, Malaysia, 5–6 September 2018; Goh, L.D., Ng, K.S., Hassan, S.H., Woo, Y.P., Eds.; AIP Publishing: Melville, NY, USA, 2020. [Google Scholar]
- Tfwala, C.M.; van Rensburg, L.; Bello, Z.; Zietsman, P.C. Laboratory vs. Field Calibration of HydraSCOUT Probes for Soil Water Measurement. Pedosphere 2019, 29, 132–136. [Google Scholar] [CrossRef]
- Skierucha, W.; Wilczek, A.; Szypłowska, A.; Sławiński, C.; Lamorsk, K. A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity. Sensors 2012, 12, 13545–13566. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Wraith, J.M.; Or, D. Time domain reflectometry measurement principles and applications. Hydrol. Proc. 2002, 16, 141–153. [Google Scholar] [CrossRef]
- Hignett, C.; Evett, S. Direct and surrogate measures of soil water content. In Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation, and Sensor Technology; Evett, S.R., Heng, L.K., Moutonnet, P., Nguyen, M.L., Eds.; IAEA: Vienna, Austria, 2008; pp. 1–22. [Google Scholar]
Physical Properties | ||||||||
Depth | Silt | Clay | Sand | p | RC | AC | PWP | PD |
(cm) | % | % | % | % | % | % | % | g cm3 |
0–30 | 64.7 | 32.5 | 2.8 | 44.8 | 39.6 | 5.2 | 23.7 | 2.75 |
30–50 | 66.4 | 31.3 | 2.3 | 42.1 | 37.8 | 4.3 | 24.5 | 2.66 |
50–70 | 68.2 | 25.5 | 6.3 | |||||
70–105 | 71.8 | 21.6 | 6.6 | |||||
Chemical Properties | ||||||||
Depth | pH | Al-P2O5 | Al-K2O | Organic Matter | CaCO3 | |||
(cm) | H2O | KCl | mg/100 g | % | % | |||
0–30 | 5.59 | 6.60 | 26.40 | 29.70 | 2.55 | 1.25 | ||
30–50 | 6.85 | 7.64 | 13.75 | 25.33 | 1.63 | 2.51 |
Watermark | Tensiometer | TDR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Field Calibration | Lab. | Field Calibration | Lab. | Field | Lab. | |||||||
cm | 10 | 20 | 30 | 45 | 20 | 30 | 45 | 10 | 20 | |||
RMSE | 3.1 | 1.7 | 2.7 | 2.8 | 1.2 | 3.2 | 4.9 | 5.0 | 2.6 | 2.1 | 2.2 | 1.9 |
MD | 30.4 | 23.8 | 63.4 | 95.6 | 33.6 | 13.8 | 38.8 | 44.3 | 32.9 | −2.6 | −1.4 | −1.2 |
MAE | 1.7 | 1.2 | 2.1 | 1.5 | 0.9 | 2.2 | 4.0 | 3.9 | 2.04 | 1.4 | 1.8 | 1.04 |
R2 | 0.68 | 0.93 | 0.91 | 0.93 | 0.97 | 0.71 | 0.57 | 0.001 | 0.86 | 0.86 | 0.86 | 0.97 |
r | −0.83 | −0.96 | −0.93 | −0.93 | −0.98 | −0.73 | −0.76 | 0.03 | −0.93 | 0.93 | 0.94 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marković, M.; Krizmanić, G.; Brkić, A.; Atilgan, A.; Japundžić-Palenkić, B.; Petrović, D.; Barač, Ž. Sustainable Management of Water Resources in Supplementary Irrigation Management. Appl. Sci. 2021, 11, 2451. https://doi.org/10.3390/app11062451
Marković M, Krizmanić G, Brkić A, Atilgan A, Japundžić-Palenkić B, Petrović D, Barač Ž. Sustainable Management of Water Resources in Supplementary Irrigation Management. Applied Sciences. 2021; 11(6):2451. https://doi.org/10.3390/app11062451
Chicago/Turabian StyleMarković, Monika, Goran Krizmanić, Andrija Brkić, Atilgan Atilgan, Božica Japundžić-Palenkić, Davor Petrović, and Željko Barač. 2021. "Sustainable Management of Water Resources in Supplementary Irrigation Management" Applied Sciences 11, no. 6: 2451. https://doi.org/10.3390/app11062451
APA StyleMarković, M., Krizmanić, G., Brkić, A., Atilgan, A., Japundžić-Palenkić, B., Petrović, D., & Barač, Ž. (2021). Sustainable Management of Water Resources in Supplementary Irrigation Management. Applied Sciences, 11(6), 2451. https://doi.org/10.3390/app11062451