Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Species and Pre-Culture
2.2. Test Chemical
2.3. Test Soil
2.4. Experimental Design to Evaluate the Periodic Influence of Silver Nanoparticles (AgNPs) Toxicity over Time
2.5. Analysis of Algal Toxicity Effects
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keesstra, S.D.; Geissen, V.; Mosse, K.; Piiranen, S.; Scudiero, E.; Leistra, M.; van Schaik, L. Soil as a filter for groundwater quality. Environ. Sustain. 2012, 4, 507–516. [Google Scholar] [CrossRef]
- Bonaventura, R.; Zito, F.; Morroni, L.; Pellegrini, D.; Regoli, F.; Pinsino, A. Development and validation of new analytical methods using sea urchin embryo bioassay to evaluate dredged marine sediments. J. Environ. Manag. 2021, 281, 111862. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.R.; Chang, L.W.; Jacobs, S.; Toresella, J.; Meckes, M.C.; Smith, M.K. Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlorinated biphenyls. Environ. Toxicol. Chem. 1997, 16, 928–938. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Fernández, I.G.; Torres, M.S.; Garzón, F.J.M.; Peinado, F.J.M. Long-term toxicity assessment of soils in a recovered area affected by a mining spill. Environ. Pollut. 2016, 208, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-Y.; Zhou, D.-M.; Cang, L.; Sun, T.-R. Application of bioassays to evaluate a copper contaminated soil before and after a pilot-scale electrokinetic remediation. Environ. Pollut. 2009, 157, 410–416. [Google Scholar] [CrossRef]
- Kwak, J.I.; Nam, S.-H.; Kim, S.W.; Bajagain, R.; Jeong, S.-W. Changes in soil properties after remediation influence the performance and survival of soil algae and earthworm. Ecotox. Environ. Saf. 2019, 174, 189–196. [Google Scholar] [CrossRef]
- Cang, L.; Zhou, D.-M.; Wang, Q.-Y.; Wu, D.-Y. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. J. Hazard. Mater. 2009, 172, 1602–1607. [Google Scholar] [CrossRef]
- Hammel, W.; Steubing, L.; Debus, R. Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test. Ecotoxicol. Environ. Saf. 1998, 40, 173–176. [Google Scholar] [CrossRef]
- Herrero-Hernández, E.; Andrades, M.S.; Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Field-scale dissipation of tebuconazole in a vineyard soil amended with spent mushroom substrate and its potential environmental impact. Ecotox. Environ. Saf. 2011, 74, 1480–1488. [Google Scholar] [CrossRef]
- Herrero-Hernández, E.; Marín-Benito, J.M.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil. J. Environ. Manag. 2015, 163, 78–86. [Google Scholar] [CrossRef]
- Metting, B. The systematics and ecology of soil algae. Botanic. Rev. 1981, 195–312. [Google Scholar] [CrossRef]
- Nam, S.-H.; Moon, J.; Kim, S.W.; Kim, H.; Jeong, S.-W.; An, Y.-J. Rapid in-situ assessment for predicting soil quality using an algae-soaked disc seeding assay. Environ. Monit. Assess. 2017, 189, 637. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Chaudhry, Q.; Sinclair, C.; Jones, A.; Aitken, R.; Jefferson, B.; Watts, C. Current and Future Predicted Environmental Exposure to Engineered Nanoparticles; Central Science Laboratory, Department of the Environment and Rural Affairs: London, UK, 2007. [Google Scholar]
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 2012, 14, 1109. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, A.; Zivcak, M.; Tripathi, D.K.; Yadav, S.; Kalaji, H.M. Phytotoxic effect of silver nanoparticles in Triticum aestivum Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 2019, 57, 209–216. [Google Scholar] [CrossRef]
- Tourinho, P.S.; van Gestel, C.A.M.; Jurkschat, K.; Soares, A.M.V.M.; Loureiro, S. Effects of soil and dietary exposures to Ag nanoparticles and AgNO3 in the terrestrial isopod Porcellionides pruinosus. Environ. Pollut. 2015, 205, 170–177. [Google Scholar] [CrossRef]
- Gomes, S.I.L.; Soares, A.M.V.M.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta) Survival, reproduction and gene expression profile. J. Hazard. Mater. 2013, 254–255, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-H.; Kwak, J.I.; An, Y.-J. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flowcytometric analyses. Sci. Rep. 2018, 8, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.-J.; Kwak, J.I.; An, Y.-J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 2012, 88, 524–529. [Google Scholar] [CrossRef]
- Nam, S.-H.; Kwak, J.I.; An, Y.-J. Assessing applicability of the paper-disc method used in combination with flow cytometry to evaluate algal toxicity. Environ. Pollut. 2018, 234, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Baun, A.; Justesen, K.B.; Nyholm, N. Algal test with soil suspensions and elutriates: A comparative evaluation for PAH-contaminated soils. Chemosphere 2002, 46, 251–258. [Google Scholar] [CrossRef]
- Brussaard, C.P.D.; Marie, D.; Thyrhaug, R.; Bratbak, G. Flow cytometric analysis of phytoplankton viability following viral infection. Aquat. Microb. Ecol. 2001, 26, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Michels, M.H.A.; van der Goot, A.J.; Norsker, N.-H.; Wijffels, R.H. Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess. Biosyst. Eng. 2010, 33, 921–927. [Google Scholar] [CrossRef] [Green Version]
- Dunnett, C.W. Multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 1955, 50, 1096–1121. [Google Scholar] [CrossRef]
- Angel, B.M.; Batley, G.E.; Jarolimek, C.V.; Rogers, N.J. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 2013, 93, 359–365. [Google Scholar] [CrossRef]
- Katsumiti, A.; Gilliland, D.; Arostegui, I.; Cajaraville, M.P. Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PLoS ONE 2015, 10, e0129039. [Google Scholar]
- Benoit, R.; Wilkinson, K.J.; Sauvé, S. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem. Cent. J. 2013, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arenas, A.Y.; Pessôa, G.S.; Arruda, M.A.Z.; Fostier, A.H. Mobility of polivinylpyrrolidone coated silver nanoparticles in tropical soils. Chemosphere 2018, 194, 543–552. [Google Scholar] [CrossRef]
- Diez-Ortiz, M.; Lahive, E.; George, S.; Schure, A.T.; Van Gestel, C.A.M.; Jurkschat, K.; Svendsen, C.; Spurgeon, D.J. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; Bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils. Environ. Pollut. 2015, 203, 191–198. [Google Scholar] [CrossRef]
- Khona, D.K.; Shirolikar, S.M.; Gawde, K.K.; Hom, E.; Deodhar, M.A.; D’Souza, J.S. Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal. Res. 2016, 16, 434–448. [Google Scholar] [CrossRef]
- Nam, S.-H.; An, Y.-J. Size and shape-dependent toxicity of silver nanomaterials in green alga Chlorococcum infusioum. Ecotox. Environ. Saf. 2019, 168, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Manier, N.; Bado-Nilles, A.; Delalain, P.; Aguerre-Chariol, O.; Pandard, P. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 2013, 180, 63–70. [Google Scholar] [CrossRef]
- Arze, A.R.; Manier, N.; Chatel, A.; Mouneyrac, C. Characterization of the nano–bio interaction between metallic oxide nanomaterials and freshwater microalgae using flow cytometry. Nanotoxicology 2020, 14, 1082–1095. [Google Scholar] [CrossRef]
- Jagadeesh, E.; Khan, B.; Chandran, P.; Khan, S.S. Toxic potential of iron oxide, CdS Ag2S composite, CdS and Ag2S NPs on a fresh water alga Mougeotia sp. Colloids Surf. B 2015, 125, 284–290. [Google Scholar] [CrossRef]
- He, X.; Xie, C.; Ma, Y.; Wang, L.; He, X.; Shi, W.; Liu, X.; Liu, Y.; Zhang, Z. Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa. Aqua. Toxicol. 2019, 209, 113–120. [Google Scholar] [CrossRef]
- Sousa, C.A.; Soares, H.M.V.M.; Soares, E.V. Chronic exposure of the freshwater alga Pseudokirchneriella subcapitata to five oxide nanoparticles: Hazard assessment and cytotoxicity mechanisms. Aqua. Toxicol. 2019, 214, 105265. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.-H.; Kwak, J.I.; An, Y.-J. Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay. Appl. Sci. 2021, 11, 2463. https://doi.org/10.3390/app11062463
Nam S-H, Kwak JI, An Y-J. Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay. Applied Sciences. 2021; 11(6):2463. https://doi.org/10.3390/app11062463
Chicago/Turabian StyleNam, Sun-Hwa, Jin Il Kwak, and Youn-Joo An. 2021. "Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay" Applied Sciences 11, no. 6: 2463. https://doi.org/10.3390/app11062463
APA StyleNam, S. -H., Kwak, J. I., & An, Y. -J. (2021). Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay. Applied Sciences, 11(6), 2463. https://doi.org/10.3390/app11062463