TiO2-Photocatalyzed Water Depollution, a Strong, yet Selective Depollution Method: New Evidence from the Solar Light Induced Degradation of Glucocorticoids in Freshwaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Analytical Determination
2.3. Irradiation Experiments
3. Results and Discussion
3.1. Kinetic Degradation in Actual Samples
3.2. Matrix Effects: Salts and Humic Acids
3.3. Identification of Photoproducts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids. Rheum. Dis. Clin. N. Am. 2016, 42, 15–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, R.H.; Cidlowski, J.A. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 2013, 132, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolster, M.B. Corticosteroids: Friends and Foes. Rheum. Dis. Clin. N. Am. 2016, 42, xv–xvi. [Google Scholar] [CrossRef] [PubMed]
- Jia, A.; Wu, S.; Daniels, K.D.; Snyder, S.A. Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. Environ. Sci. Technol. 2016, 50, 2870–2880. [Google Scholar] [CrossRef]
- Duclos, M. Glucocorticoids: A Doping Agent? Endocrinol. Metab. Clin. N. Am. 2010, 39, 107–126. [Google Scholar] [CrossRef]
- EEC council directive No. 96/22/EC. Off. J. Eur. Commun. L 1996, 125. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31996L0023 (accessed on 14 February 2021).
- Weizel, A.; Schlüsener, M.P.; Dierkes, G.; Wick, A.; Ternes, T.A. Analysis of the aerobic biodegradation of glucocorticoids: Elucidation of the kinetics and transformation reactions. Water Res. 2020, 174, 115561. [Google Scholar] [CrossRef] [PubMed]
- Kugathas, S.; Williams, R.J.; Sumpter, J.P. Prediction of environmental concentrations of glucocorticoids: The River Thames, UK, as an example. Environ. Int. 2012, 40, 15–23. [Google Scholar] [CrossRef]
- Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R.M. Determination of glucocorticoids in sewage and river waters by ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2012, 1224, 19–26. [Google Scholar] [CrossRef]
- Weizel, A.; Schlüsener, M.P.; Dierkes, G.; Ternes, T.A. Occurrence of Glucocorticoids, Mineralocorticoids, and Progestogens in Various Treated Wastewater, Rivers, and Streams. Environ. Sci. Technol. 2018, 52, 5296–5307. [Google Scholar] [CrossRef]
- Speltini, A.; Merlo, F.; Maraschi, F.; Sturini, M.; Contini, M.; Calisi, N.; Profumo, A. Thermally condensed humic acids onto silica as SPE for effective enrichment of glucocorticoids from environmental waters followed by HPLC-HESI-MS/MS. J. Chromatogr. A 2018, 1540, 38–46. [Google Scholar] [CrossRef]
- Wu, S.; Jia, A.; Daniels, K.D.; Park, M.; Snyder, S.A. Trace analysis of corticosteroids (CSs) in environmental waters by liquid chromatography–tandem mass spectrometry. Talanta 2019, 195, 830–840. [Google Scholar] [CrossRef]
- Fan, Z.; Wu, S.; Chang, H.; Hu, J. Behaviors of Glucocorticoids, Androgens and Progestogens in a Municipal Sewage Treatment Plant: Comparison to Estrogens. Environ. Sci. Technol. 2011, 45, 2725–2733. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Hu, J.; Shao, B. Occurrence of Natural and Synthetic Glucocorticoids in Sewage Treatment Plants and Receiving River Waters. Environ. Sci. Technol. 2007, 41, 3462–3468. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chang, H.; Sun, Y.; Wan, Y. Determination and occurrence of natural and synthetic glucocorticoids in surface waters. Environ. Int. 2020, 134, 105278. [Google Scholar] [CrossRef]
- Gong, J.; Lin, C.; Xiong, X.; Chen, D.; Chen, Y.; Zhou, Y.; Wu, C.; Du, Y. Occurrence, distribution, and potential risks of environmental corticosteroids in surface waters from the Pearl River Delta, South China. Environ. Pollut. 2019, 251, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Schriks, M.; van Leerdam, J.A.; van der Linden, S.C.; van der Burg, B.; van Wezel, A.P.; de Voogt, P. High-Resolution Mass Spectrometric Identification and Quantification of Glucocorticoid Compounds in Various Wastewaters in The Netherlands. Environ. Sci. Technol. 2010, 44, 4766–4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes-Alonso, R.; Santana-Viera, S.; Montesdeoca-Esponda, S.; Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Application of microwave-assisted extraction and ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of sex hormones and corticosteroids in sewage sludge samples. Anal. Bioanal. Chem. 2016, 408, 6833–6844. [Google Scholar] [CrossRef]
- Willi, R.A.; Faltermann, S.; Hettich, T.; Fent, K. Active Glucocorticoids Have a Range of Important Adverse Developmental and Physiological Effects on Developing Zebrafish Embryos. Environ. Sci. Technol. 2018, 52, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Willi, R.A.; Castiglioni, S.; Salgueiro-González, N.; Furia, N.; Mastroianni, S.; Faltermann, S.; Fent, K. Physiological and Transcriptional Effects of Mixtures of Environmental Estrogens, Androgens, Progestins, and Glucocorticoids in Zebrafish. Environ. Sci. Technol. 2020, 54, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Xin, N.; Jiang, Y.; Liu, S.; Zhou, Y.; Cheng, Y. Effects of prednisolone on behavior and hypothalamic–pituitary–interrenal axis activity in zebrafish. Environ. Toxicol. Pharmacol. 2020, 75, 103325. [Google Scholar] [CrossRef]
- Willi, R.A.; Salgueiro-González, N.; Carcaiso, G.; Fent, K. Glucocorticoid mixtures of fluticasone propionate, triamcinolone acetonide and clobetasol propionate induce additive effects in zebrafish embryos. J. Hazard. Mater. 2019, 374, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Cantalupi, A.; Maraschi, F.; Pretali, L.; Albini, A.; Nicolis, S.; Ferri, E.N.; Profumo, A.; Speltini, A.; Sturini, M. Glucocorticoids in freshwaters: Degradation by solar light and environmental toxicity of the photoproducts. Int. J. Environ. Res. Public Health 2020, 17, 8717. [Google Scholar] [CrossRef] [PubMed]
- Gmurek, M.; Olak-Kucharczyk, M.; Ledakowicz, S. Photochemical decomposition of endocrine disrupting compounds – A review. Chem. Eng. J. 2017, 310, 437–456. [Google Scholar] [CrossRef]
- Serpone, N.; Artemev, Y.M.; Ryabchuk, V.K.; Emeline, A.V.; Horikoshi, S. Light-driven advanced oxidation processes in the disposal of emerging pharmaceutical contaminants in aqueous media: A brief review. Curr. Opin. Green Sustain. Chem. 2017, 6, 18–33. [Google Scholar] [CrossRef]
- Pretali, L.; Maraschi, F.; Cantalupi, A.; Albini, A.; Sturini, M. Water Depollution and Photo-Detoxification by Means of TiO2: Fluoroquinolone Antibiotics as a Case Study. Catalysts 2020, 10, 628. [Google Scholar] [CrossRef]
- Calza, P.; Pelizzetti, E.; Brussino, M.; Baiocchi, C. Ion trap tandem mass spectrometry study of dexamethasone transformation products on light activated TiO2 surface. J. Am. Soc. Mass Spectrom. 2001, 12, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Romão, J.S.; Hamdy, M.S.; Mul, G.; Baltrusaitis, J. Photocatalytic decomposition of cortisone acetate in aqueous solution. J. Hazard. Mater. 2015, 282, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Klauson, D.; Pilnik-Sudareva, J.; Pronina, N.; Budarnaja, O.; Krichevskaya, M.; Käkinen, A.; Juganson, K.; Preis, S. Aqueous photocatalytic oxidation of prednisolone. Open Chem. 2013, 11, 1620–1633. [Google Scholar] [CrossRef]
- Díez, A.M.; Ribeiro, A.S.; Sanromán, M.A.; Pazos, M. Optimization of photo-Fenton process for the treatment of prednisolone. Environ. Sci. Pollut. Res. 2018, 25, 27768–27782. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; He, Q.; Liu, C.; Deng, Y.; Wei, Y.; Chen, S.; Liu, T.; Luo, S. Prednisolone degradation by UV/chlorine process: Influence factors, transformation products and mechanism. Chemosphere 2018, 212, 56–66. [Google Scholar] [CrossRef]
- He, X.; Huang, H.; Tang, Y.; Guo, L. Kinetics and mechanistic study on degradation of prednisone acetate by ozone. J. Environ. Sci. Health Part A 2020, 55, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Welter, J.B.; da Silva, S.W.; Schneider, D.E.; Rodrigues, M.A.S.; Ferreira, J.Z. Performance of Nb/BDD material for the electrochemical advanced oxidation of prednisone in different water matrix. Chemosphere 2020, 248, 126062. [Google Scholar] [CrossRef] [PubMed]
- Ghenaatgar, A.; Tehrani, R.M.A.; Khadir, A. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies. J. Water Process Eng. 2019, 32, 100969. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, A.; Guo, Q.; Rui, M.; Zhao, Y.; Zhang, H.; Zhu, S. Decomposition of dexamethasone by gamma irradiation: Kinetics, degradation mechanisms and impact on algae growth. Chem. Eng. J. 2017, 307, 722–728. [Google Scholar] [CrossRef]
- Giahi, M.; Taghavi, H.; Habibi, S. Photocatalytic degradation of betamethasone sodium phosphate in aqueous solution using ZnO nanopowder. Russ. J. Phys. Chem. A 2012, 86, 2003–2007. [Google Scholar] [CrossRef]
- Thomas, A.G.; Syres, K.L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 2012, 41, 4207. [Google Scholar] [CrossRef] [PubMed]
- Sushko, M.L.; Gal, A.Y.; Shluger, A.L. Interaction of organic molecules with the TiO2 (110) surface: Ab inito calculations and classical force fields. J. Phys. Chem. B 2006, 110, 4853–4862. [Google Scholar] [CrossRef] [PubMed]
- Sturini, M.; Speltini, A.; Maraschi, F.; Profumo, A.; Pretali, L.; Fasani, E.; Albini, A. Photochemical Degradation of Marbofloxacin and Enrofloxacin in Natural Waters. Environ. Sci. Technol. 2010, 44, 4564–4569. [Google Scholar] [CrossRef] [PubMed]
- Petala, A.; Mantzavinos, D.; Frontistis, Z. Impact of water matrix on the photocatalytic removal of pharmaceuticals by visible light active materials. Curr. Opin. Green Sustain. Chem. 2021, 28, 100445. [Google Scholar] [CrossRef]
- Vione, D. Photochemical reactions in sunlit surface waters: Influence of water parameters, and implications for the phototransformation of xenobiotic compounds. Photochemistry 2016, 44, 348–363. [Google Scholar]
- Rasolevandi, T.; Naseri, S.; Azarpira, H.; Mahvi, A.H. Photo-degradation of dexamethasone phosphate using UV/Iodide process: Kinetics, intermediates, and transformation pathways. J. Mol. Liq. 2019, 295, 111703. [Google Scholar] [CrossRef]
Parameters/Ions | Tap Water | River Water | |
---|---|---|---|
pH | 7.7 | 7.9 | |
Conductivity at 20 °C | µS cm−1 | 271 | 293 |
TOC * | mg L−1 | <2 | 6.9 |
Cl− | mg L−1 | 5.0 | 4.0 |
NO3− | mg L−1 | 0.6 | 1.5 |
SO42− | mg L−1 | 5.0 | 13 |
HCO3− | mg L−1 | 182 | 195 |
Ca2+ | mg L−1 | 35 | 54 |
Mg2+ | mg L−1 | 10 | 7.5 |
Na+ | mg L−1 | 12 | 5.5 |
Photolysis | Photocatalysis | ||||
---|---|---|---|---|---|
Simulated Solar Light | Simulated Solar Light | Natural Sunlight | |||
Compound | Tap Water kdeg (min−1) | River Water kdeg (min−1) | Tap Water kdeg (min−1) | River Water kdeg (min−1) | River Water kdeg (min−1) |
CORT | 0.00106(5) | 0.00128(3) | 0.35(3) | 0.300(8) | 0.39(1) |
HCORT | 0.00246(9) | 0.0033(2) | 0.38(1) | 0.315(8) | 0.38(2) |
BETA | 0.0115(6) | 0.0114(1) | 0.336(9) | 0.32(1) | 0.35(2) |
DEXA | 0.0117(1) | 0.0097(6) | 0.386(9) | 0.314(7) | 0.61(1) |
PRED | 0.0185(9) | 0.0186(6) | 0.431(9) | 0.33(1) | 0.474(9) |
PREDLO | 0.024(1) | 0.0199(4) | 0.51(1) | 0.336(4) | 0.52(1) |
TRIAM | 0.0139(3) | 0.0099(4) | 0.355(9) | 0.29(1) | 0.38(1) |
GC | AOP | Matrix | Kinetic Constant, % Removal, Degradation Time | Ref |
---|---|---|---|---|
DEXA 2-50 mg L−1 | Gamma ray, gamma ray with H2O2 or Fenton | Pure water, pH 7.2 | 5 × 10−4 – 4.7 × 10−3 Gy−1 , 8 × 10−4 – 1.6 × 10−3 Gy−1 | [35] |
PRED 50 mg L−1 | Electrochemical oxidation process 20 mA cm−2 | Pure water, pH 11, Na2SO4 1 g L−1 | 0.1052 mg h−1, 78% removal 4 h | [33] |
PRED acetate 5 mg L−1 | O3 50 mg min−1 | Pure water, pH 3 | 0.0595 min−1, 90% removal 30 min | [32] |
PREDLO 3.6 mg L−1 | UV/chlorine, 254 nm | Phosphate buffer pH 7, artificial fresh water pH 6 | 5.53 × 10−3 s−1 | [31] |
PREDLO 100 mg L−1 | UV-Fenton, 360 nm | Pure water, pH 3 | Quantitative removal 15 min | [30] |
DEXA 5 mg L−1 | ZrO2 1.5 g L−1, 365 nm WO3 0.5 g L−1, >380 nm | Pure water, pH 3 | ZrO2 0.0078 min−1, 76% removal 180 min WO3 0.0277 min−1, 100% removal 80 min | [34] |
BETA phosphate 30 mg L−1 | ZnO 0.44 g L−1, 254 nm ZnO 0.44 g L−1, persulfate, 254 nm | Pure water, pH 9 | Removal 63%, 180 min Removal 98%, 180 min | [36] |
PREDLO 25 mg L−1 | TiO2 P25 1 g L−1, 365 nm or solar light | Pure water, pH 6.7 | Removal 94%, 1 h solar light Removal 73%, 1 h 365 nm | [29] |
CORT acetate 10 mg L−1 | TiO2 P25, 375 nm, air saturated, TiO2 P25, 375 nm, persulfate air saturated | Different buffer solution, air saturated | 0.040 min−1, quantitative removal 100 min, 0.071 min−1, quantitative removal 30 min | [28] |
DEXA 10 mg L−1 | TiO2 P25 0.2 g L−1, simulated solar light | Pure water, air saturated | Quantitative removal 15 min | [27] |
CORT, HCORT, BETA, DEXA, PRED, PREDLO, TRIAM 10 mg L−1 | TiO2 P25 0.5 g L−1, simulated solar light | Tap water, natural pH | 0.184(5), 0.230(7), 0.19(1), 0.206(5), 0.177(7), 0.224(3), 0.24(1) min−1 Removal >95% 15 min | [This work] |
Compound | CORT | PREDLO | TRIAM |
---|---|---|---|
Matrix | kdeg (min−1) | ||
tw | 0.35 (3) | 0.51 (1) | 0.355 (9) |
tw + SO42− (50 mg L−1) | 0.41 (3) | 0.539 (5) | 0.31 (1) |
tw + NO3− (20 mg L−1) | 0.28 (1) | 0.45 (1) | 0.37 (1) |
tw + HAs (10 mg L−1) | 0.10 (1) | 0.10 (1) | 0.08 (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pretali, L.; Albini, A.; Cantalupi, A.; Maraschi, F.; Nicolis, S.; Sturini, M. TiO2-Photocatalyzed Water Depollution, a Strong, yet Selective Depollution Method: New Evidence from the Solar Light Induced Degradation of Glucocorticoids in Freshwaters. Appl. Sci. 2021, 11, 2486. https://doi.org/10.3390/app11062486
Pretali L, Albini A, Cantalupi A, Maraschi F, Nicolis S, Sturini M. TiO2-Photocatalyzed Water Depollution, a Strong, yet Selective Depollution Method: New Evidence from the Solar Light Induced Degradation of Glucocorticoids in Freshwaters. Applied Sciences. 2021; 11(6):2486. https://doi.org/10.3390/app11062486
Chicago/Turabian StylePretali, Luca, Angelo Albini, Alice Cantalupi, Federica Maraschi, Stefania Nicolis, and Michela Sturini. 2021. "TiO2-Photocatalyzed Water Depollution, a Strong, yet Selective Depollution Method: New Evidence from the Solar Light Induced Degradation of Glucocorticoids in Freshwaters" Applied Sciences 11, no. 6: 2486. https://doi.org/10.3390/app11062486
APA StylePretali, L., Albini, A., Cantalupi, A., Maraschi, F., Nicolis, S., & Sturini, M. (2021). TiO2-Photocatalyzed Water Depollution, a Strong, yet Selective Depollution Method: New Evidence from the Solar Light Induced Degradation of Glucocorticoids in Freshwaters. Applied Sciences, 11(6), 2486. https://doi.org/10.3390/app11062486