Self-Tuning Algorithm for Tuneable Clamping Table for Chatter Suppression in Blade Recontouring
Abstract
:1. Introduction
2. Semi-Active Tuneable Clamping Table: Concept and Benefits
3. Unidirectional Milling Model with Tuneable Clamping Table
3.1. Structural Dynamics
3.2. Regenerative Milling Force
3.3. Zeroth-Order Milling Stability
3.4. Semidiscretization Based Milling Stability
4. Chatter Suppressing Strategy for the TCT Architecture
4.1. Dimensionless Formulation of the System Dynamics
4.2. Excitation Frequency Dependent Tuning for the TCT
4.3. Comparison with Equivalent Constant Parameter Tuning Strategy
5. Iterative Tuning Algorithm for the TCT
6. Validation of the Concept
6.1. Milling Stability through Semidiscretization Method
6.2. Initial Value Time Domain Simulations with Fly-Over Effect
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DDE | delay differential equation |
FFT | fast Fourier transform |
MRO | maintenance, repair and overhaul |
SLD | stability lobe diagram |
TMD | tuned mass damper |
TCT | tuneable clamping table |
ZOA | zeroth order algorithm |
Nomenclature
() | t: tangential, r: radial |
assembly mass matrix | |
assembly viscous damping matrix | |
assembly stiffness matrix | |
assembly receptance matrix | |
modal (reflected) mass of the ith substructure | |
modal (reflected) stiffness of the ith substructure | |
flexure stiffness | |
rotary spring stiffness | |
modal (reflected) viscous damping of the ith substructure | |
receptance function between the ith and jth substructures | |
angular position of the rotary spring | |
displacement vector | |
stationary solution vector | |
perturbed solution vector | |
force vector | |
specific cutting force in tangential-radial () coordinates | |
cutting coefficient vector | |
edge coefficient vector | |
feed per tooth | |
spindle speed | |
a | axial depth of cut |
h | chip thickness |
entering immersion angle | |
exit immersion angle | |
angular position of the cutter | |
regenerative delay | |
tooth passing period | |
tooth passing frequency | |
dominant chatter frequency | |
phase of the receptance between the ith and jth substructures | |
excitation frequency | |
screen function | |
g | dimensionless excitation frequency |
mass ratio | |
standalone damping ratio of the ith substructure | |
standalone natural frequency of the ith substructure | |
f | frequency ratio |
dimensionless receptance between the ith and jth substructures | |
optimal frequency tuning ratio of the broad-bandwidth strategy | |
optimal TCT damping ratio of the broad-bandwidth strategy | |
zero real part tuning ratio | |
zero real part derivative tuning ratio | |
optimal frequency tuning ratio of the excitation frequency dependent strategy | |
dimensionless TCT tuning limits | |
upper tuning ratio limit | |
lower tuning ratio limit | |
dimensionless frequency of the stability asymptote | |
dimensionless spindle speed of the stability asymptote | |
dimensionless spindle speed | |
dimensionless depth of cut | |
B | directional milling coefficient |
directional factor | |
regenerative milling force | |
G | stationary milling force |
Z | number of flutes of the cutter |
D | cutter diameter |
References
- Yilmaz, O.; Noble, D.; Gindy, N.N.; Gao, J. A study of turbomachinery components machining and repairing methodologies. Aircr. Eng. Aerosp. Technol. 2005, 77, 455–466. [Google Scholar] [CrossRef]
- Denkena, B.; Boess, V.; Nespor, D.; Floeter, F.; Rust, F. Engine blade regeneration: A literature review on common technologies in terms of machining. Int. J. Adv. Manuf. Technol. 2015, 81, 917–924. [Google Scholar] [CrossRef]
- Bieler, H. Einkristalle Reparieren; Technical Report; Sulzer AG: Winterthur, Switzerland, 1997. [Google Scholar]
- Yilmaz, O.; Gindy, N.; Gao, J. A repair and overhaul methodology for aeroengine components. Robot. Comput.-Integr. Manuf. 2010, 26, 190–201. [Google Scholar] [CrossRef]
- Penaranda, X.; Moralejo, S.; Lamikiz, A.; Figueras, J. An adaptive laser cladding methodology for blade tip repair. Int. J. Adv. Manuf. Technol. 2017, 92, 4337–4343. [Google Scholar] [CrossRef]
- Burbaum, B.; Kamel, A.; Bostanjoglo, G.; Ott, M.; Stöhr, B.; Ahmad, F. Maintenance, Repair and Overhaul of Gas Turbine Components for Lifetime Extension Maintenance, Repair and Overhaul of Gas Turbine Components Content; Siemens: Aachen, Germany, 2019. [Google Scholar]
- Bremer, C. AROSATEC (Automated Repair and Overhaul System for Aero Turbine Engine Components) Final Report; Technical Report; BCT GmbH: Dortmund, Germany, 2006. [Google Scholar]
- Brecher, C.; Klocke, F.; Breitbach, T.; Do-Khac, D.; Heinen, D.; Karlberger, A.; Rosen, C.J. A hybrid machining center for enabling new die manufacturing and repair concepts. Prod. Eng. 2011, 5, 405–413. [Google Scholar] [CrossRef]
- Tobias, S.A.S.; Fishwick, W. Theory of Regenerative Machine Tool Chatter. Engineer 1958, 205, 199–203. [Google Scholar]
- Tlusty, J.; Polacek, M. The stability of machine tools against self-excited vibrations in machining. ASME Int. Res. Prod. Eng. 1963, 1, 465–474. [Google Scholar]
- Munoa, J.; Beudaert, X.; Dombovari, Z.; Altintas, Y.; Budak, E.; Brecher, C.; Stepan, G. Chatter suppression techniques in metal cutting. CIRP Ann.-Manuf. Technol. 2016, 65, 785–808. [Google Scholar] [CrossRef]
- Stepan, G.; Hajdu, D.; Iglesias, A.; Takacs, D.; Dombovari, Z. Ultimate capability of variable pitch milling cutters. CIRP Ann. 2018, 67, 373–376. [Google Scholar] [CrossRef]
- Bediaga, I.; Egaña, I.; Muñoa, J. Reducción de la Inestabilidad en Cortes Interrumpidos en Fresado a Alta Velocidad mediante Variación de la Velocidad del Husillo. In Proceedings of the XVI Congreso de Máquinas-Herramienta y Tecnologías de Fabricación, San Sebastián, Spain, 18–20 October 2006. [Google Scholar]
- Mörhring, H.C. Messtechnische Analyse formflexibler Spannmethoden. Werkstattstechnik 2012, 102, 795–800. [Google Scholar]
- Beudaert, X.; Erkorkmaz, K.; Munoa, J. Portable damping system for chatter suppression on flexible workpieces. CIRP Ann. 2019, 68, 423–426. [Google Scholar] [CrossRef]
- Kolluru, K.; Axinte, D. Coupled interaction of dynamic responses of tool and workpiece in thin wall milling. J. Mater. Process. Technol. 2013, 213, 1565–1574. [Google Scholar] [CrossRef]
- Gubanov, G. Broadband pneumatic mass damper for the elimination of workpiece vibrations. CIRP J. Manuf. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Munoa, J.; Sanz-Calle, M.; Dombovari, Z.; Iglesias, A.; Pena-Barrio, J.; Stepan, G. Tuneable clamping table for chatter avoidance in thin-walled part milling. CIRP Ann. 2020, 14–17. [Google Scholar] [CrossRef]
- Ormondroyd, J.; Den Hartog, J. The theory of the dynamic vibration absorber. J. Appl. Mech. 1928, 50, 9–22. [Google Scholar]
- Den Hartog, J.P. Mechanical Vibrations; McGraw-Hill: New York, NY, USA, 1947. [Google Scholar]
- Koenigsberger, F.; Tlusty, J. Machine Tool Structures; Pergamon Press: Oxford, UK, 1970; Volume 1. [Google Scholar] [CrossRef]
- Sims, N.D. Vibration absorbers for chatter suppression: A new analytical tuning methodology. J. Sound Vib. 2007, 301, 592–607. [Google Scholar] [CrossRef] [Green Version]
- Pena-Barrio, J.; Sanz-Calle, M.; Aguirre, G.; Iglesias, A.; Stepan, G.; López De Lacalle, L.N. Optimal tuning strategy for chatter avoidance in thin- walled part milling by means of tuneable clamping table. In Proceedings of the ISMA2020 and USD2020, Leuven, Belgium, 7–9 September 2020; pp. 3119–3132. [Google Scholar]
- Slavicek, J.; Bollinger, J. Design and Application of a Self-Optimizing Damper for Increasing Machine Tool Performance. In Advances in Machine Tool Design and Research; Pergamon Press Ltd.: Oxford, UK, 1969; pp. 71–81. [Google Scholar] [CrossRef]
- Seto, K.; Tominari, N. Effect of a Variable Stiffness-Type Dynamic Damper on Machine Tools with Long Overhung Ram. CIRP Ann. 1978, 27, 327–332. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, S.; Pan, Z.; Ding, D.; Gienke, O.; Li, W. Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber. Mech. Syst. Signal Process. 2019, 117, 221–237. [Google Scholar] [CrossRef]
- Olarra, A.; Azpeitia, J.L.; Guruceta, E.; Sánchez, M.; Cantero, C. Aplicación de Absorbedores Dinámicos Sintonizados en Máquina Herramienta. In Proceedings of the XVIII Congreso de Máquinas-Herramienta y Tecnologías de Fabricación, San Sebastián, Spain, 10–12 November 2010. [Google Scholar]
- Aguirre, G.; Gorostiaga, M.; Porchez, T.; Muñoa, J. Self-tuning semi-active tuned-mass damper for machine tool chatter suppression. ISMA2012-USD2012 2012, 1, 109–123. [Google Scholar]
- Munoa, J.; Iglesias, A.; Olarra, A.; Dombovari, Z.; Zatarain, M.; Stepan, G. Design of self-tuneable mass damper for modular fixturing systems. CIRP Ann.-Manuf. Technol. 2016, 65, 389–392. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, R.; Liu, Q. Design of a passive damper with tunable stiffness and its application in thin-walled part milling. Int. J. Adv. Manuf. Technol. 2017, 89, 2713–2720. [Google Scholar] [CrossRef]
- Sims, N.; Stanway, R.; Johnson, A. Vibration control using smart fluids: A state-of-the-art review. Shock Vib. Dig. 1999, 31, 195–203. [Google Scholar] [CrossRef]
- Díaz-Tena, E.; López de Lacalle, L.N.; Ampa, F.J.; Bocanegra, D.L.C. Use of Magnetorheological Fluids for Vibration Reduction on the Milling of Thin Floor Parts. Procedia Eng. 2013, 63, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhang, D.; Wu, B.; Luo, M.; Liu, Y. Stability improvement and vibration suppression of the thin-walled workpiece in milling process via magnetorheological fluid flexible fixture. Int. J. Adv. Manuf. Technol. 2017, 88, 1231–1242. [Google Scholar] [CrossRef]
- Moheimani, S.O.R.; Fleming, A.J. Piezoelectric Transducers for Vibration Control and Damping (Advances in Industrial Control); Springer Science & Business Media: Berlin, Germany, 2006; p. 271. [Google Scholar]
- Venter, G.S.; Silva, L.M.d.P.; Carneiro, M.B.; da Silva, M.M. Passive and active strategies using embedded piezoelectric layers to improve the stability limit in turning/boring operations. Int. J. Adv. Manuf. Technol. 2017, 89, 2789–2801. [Google Scholar] [CrossRef]
- Yigit, U.; Cigeroglu, E.; Budak, E. Chatter reduction in boring process by using piezoelectric shunt damping with experimental verification. Mech. Syst. Signal Process. 2017, 94, 312–321. [Google Scholar] [CrossRef]
- Sims, N.D.; Stanway, R.; Peel, D.J.; Bullough, W.A.; Johnson, A.R. Controllable viscous damping: An experimental study of an electrorheological long-stroke damper under proportional feedback control. Smart Mater. Struct. 1999, 8, 601–615. [Google Scholar] [CrossRef]
- Wang, M.; Fei, R. Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids. Int. J. Mach. Tools Manuf. 1999, 39, 1925–1934. [Google Scholar] [CrossRef]
- Sajedi Pour, D.; Behbahani, S. Semi-active fuzzy control of machine tool chatter vibration using smart MR dampers. Int. J. Adv. Manuf. Technol. 2016, 83, 421–428. [Google Scholar] [CrossRef]
- Munoa, J.; Dombovari, Z.; Iglesias, A.; Stepan, G.; Stepan Tuneable, G.; Iglesias, A. Tuneable mass dampers with variable stiffness for chatter suppression mass dampers with variable stiffness for chatter suppression. In Proceedings of the 4th International Conference on Virtual Machining Process Technology (VMPT 2015), Vancouver, BC, Canada, 2–5 June 2015. [Google Scholar]
- Altintas, Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Stepan, G. Retarded Dynamical Systems: Stability and Characteristic Functions; Longman: Harlow, UK, 1989; p. 159. [Google Scholar]
- Insperger, T.; Stepan, G. Semi-Discretization for Time-Delay Systems; Springer Science & Business Media: Berlin, Germany, 2011; p. 185. [Google Scholar]
- Ding, Y.; Zhu, L.M.; Zhang, X.J.; Ding, H. A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf. 2010, 50, 502–509. [Google Scholar] [CrossRef]
- Opitz, H.; Bernardi, F. Investigation and Calculation of the Chatter Behaviour of Lathes and Milling Machines. CIRP Ann. 1970, 18, 335–343. [Google Scholar] [CrossRef]
- Altintas, Y.; Budak, E. Analytical Prediction of Stability Lobes in Milling. CIRP Ann. 1995, 44, 357–362. [Google Scholar] [CrossRef]
- Munoa, J.; Dombovari, Z.; Mancisidor, I.; Yang, Y.; Zatarain, M. Interaction between multiple modes in milling processes. Mach. Sci. Technol. 2013, 17, 165–180. [Google Scholar] [CrossRef]
- Farkas, M. Periodic Motions; Springer: Berlin/Heidelberg, Germany, 1994; p. 3. [Google Scholar] [CrossRef]
- Dombovari, Z.; Iglesias, A.; Zatarain, M.; Insperger, T. Prediction of multiple dominant chatter frequencies in milling processes. Int. J. Mach. Tools Manuf. 2011, 51, 457–464. [Google Scholar] [CrossRef]
- Iglesias, A.; Munoa, J.; Ciurana, J.; Dombovari, Z.; Stepan, G. Analytical expressions for chatter analysis in milling operations with one dominant mode. J. Sound Vib. 2016, 375, 403–421. [Google Scholar] [CrossRef]
- Tlusty, J.; Ismail, F. Basic Non-Linearity in Machining Chatter. CIRP Ann. 1981, 30, 299–304. [Google Scholar] [CrossRef]
- Kondo, Y.; Kawano, O.; Sato, H. Behavior of Self-Excited Chatter Due To Multiple Regenerative Effect. J. Eng. Ind. 1981, 103, 324–329. [Google Scholar] [CrossRef]
- Cox, S.M.; Matthews, P.C. Exponential Time Differencing for Stiff Systems. J. Comput. Phys. 2002, 455, 430–455. [Google Scholar] [CrossRef] [Green Version]
Part/Structure | |||
---|---|---|---|
nat. frequency | dimless frequency | ||
TCT/Tuning | |||
nat. frequency | frequency ratio | mass ratio | damping ratio |
Tool/Material | Process | ||||||
---|---|---|---|---|---|---|---|
D (mm) | Z | (MPa) | (N/mm) | immersion (%) | strategy | (mm) | |
12 | 3 | 25 | down-milling | 0.67 | 0.1 | ||
Part Dynamics | TCT | ||||||
(Hz) | (kg) | (%) | |||||
300 | 0.5 | 0.5 | 5 | 10 | 12.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz-Calle, M.; Dombovari, Z.; Munoa, J.; Iglesias, A.; López de Lacalle, L.N. Self-Tuning Algorithm for Tuneable Clamping Table for Chatter Suppression in Blade Recontouring. Appl. Sci. 2021, 11, 2569. https://doi.org/10.3390/app11062569
Sanz-Calle M, Dombovari Z, Munoa J, Iglesias A, López de Lacalle LN. Self-Tuning Algorithm for Tuneable Clamping Table for Chatter Suppression in Blade Recontouring. Applied Sciences. 2021; 11(6):2569. https://doi.org/10.3390/app11062569
Chicago/Turabian StyleSanz-Calle, Markel, Zoltan Dombovari, Jokin Munoa, Alexander Iglesias, and Luis Norberto López de Lacalle. 2021. "Self-Tuning Algorithm for Tuneable Clamping Table for Chatter Suppression in Blade Recontouring" Applied Sciences 11, no. 6: 2569. https://doi.org/10.3390/app11062569
APA StyleSanz-Calle, M., Dombovari, Z., Munoa, J., Iglesias, A., & López de Lacalle, L. N. (2021). Self-Tuning Algorithm for Tuneable Clamping Table for Chatter Suppression in Blade Recontouring. Applied Sciences, 11(6), 2569. https://doi.org/10.3390/app11062569