Shape Optimization of an Open Photoacoustic Resonator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Simulation
2.3. Optimization
3. Results and Discussion
3.1. Reference Resonator
3.2. Parameter Sweep
3.2.1. Resonance Cylinder
3.2.2. Cavity Cylinder
3.3. Optimization
3.4. Verification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bell, A.G. On the production and reproduction of sound by light. Am. J. Sci. 1880, 20, 305–324. [Google Scholar] [CrossRef] [Green Version]
- McClelland, J. Condensed matter photoacoustic spectroscopy and detection using gas phase signal generation. 1980 Ultrason. Symposium. 1980, 610–617. [Google Scholar] [CrossRef]
- Somoano, R.B. Photoacoustic spectroscopy of condensed matter. Angew. Chem. 1978, 17, 238–245. [Google Scholar] [CrossRef]
- Martel, R.; N’Soukpoe-Kossi, C.N.; Paquin, P.; Leblanc, R.M. Photoacoustic analysis of some milk products in ultraviolet and visible light. J. Dairy Sci. 1987, 70, 1822–1827. Available online: https://www.journalofdairyscience.org/article/S0022-0302(87)80220-5/pdf (accessed on 8 March 2021). [CrossRef]
- Döka, O.; Bicanic, D.; Szöllösy, L. Rapid and gross screening for Pb3O4 adulterant in ground sweet red paprika by means of photoacoustic spectroscopy. Instrum. Sci. Technol. 1998, 25, 203–208. [Google Scholar] [CrossRef]
- He, Y.; Shi, J.; Pleitez, M.A.; Maslov, K.I.; Wagenaar, D.A.; Wang, L.V. Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy. J. Biomed. Opt. 2020, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pleitez, M.A.; Khan, A.A.; Soldà, A.; Chmyrov, A.; Reber, J.; Gasparin, F.; Seeger, M.R.; Schätz, B.; Herzig, S.; Scheideler, M.; et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 2020, 38, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Saalberg, Y.; Bruhns, H.; Wolff, M. Photoacoustic spectroscopy for the determination of lung cancer biomarkers-a preliminary investigation. Sensors 2017, 17, 210. [Google Scholar] [CrossRef]
- Loh, A.; Wolff, M. Photoacoustic detection of short-chained hydrocarbons isotopologues. Proceedings 2019, 15, 15023. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, M.W. Trace gas monitoring by laser-photoacoustic spectroscopy. Infrared Phys. Technol. 1995, 36, 415–425. [Google Scholar] [CrossRef]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photoacoustic spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef] [Green Version]
- Dumitraş, D.C.; Dutu, D.C.; Matei, C.; Magureanu, A.M.; Petrus, M.; Popa, C. Laser photoacoustic spectroscopy: Principles, instrumentation, and characterization. J. Optoelectron. Adv. Mater. 2007, 9, 3655–3701. [Google Scholar]
- Pleitez, M.A.; Lieblein, T.; Bauer, A.; Hertzberg, O.; Lilienfeld-Toal, H.V.; Mäntele, W. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid. Rev. Sci. Instrum. 2013, 84, 084901. [Google Scholar] [CrossRef]
- Sim, J.Y.; Ahn, C.-G.; Jeong, E.-J.; Kim, B.K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep. 2018, 8, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijnen, F.G.C.; Reuss, J.; Harren, F.J.M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Rev. Sci. Instrum. 1996, 67, 2914–2923. [Google Scholar] [CrossRef] [Green Version]
- Kost, B.; Baumann, B.; Germer, M.; Wolff, M.; Rosenkranz, M. Numerical shape optimization of photoacoustic resonators. Appl. Phys. B 2011, 102, 87–93. [Google Scholar] [CrossRef]
- Wolff, M.; Kost, B.; Baumann, B. Shape-Optimized Photoacoustic Cell: Numerical Consolidation and Experimental Confirmation. Int. J. Thermophys. 2012, 33, 1953–1959. [Google Scholar] [CrossRef]
- Cotterell, M.I.; Ward, G.P.; Hibbins, A.P.; Haywood, J.M.; Wilson, A.; Langridge, J.M. Optimizing the performance of aerosol photoacoustic cells using a finite element model. Part 1: Method validation and application to single-resonator multipass cells. Aerosol. Sci. Technol. 2019, 53, 1107–1127. [Google Scholar] [CrossRef] [Green Version]
- Cotterell, M.I.; Ward, G.P.; Hibbins, A.P.; Haywood, J.M.; Wilson, A.; Langridge, J.M. Optimizing the performance of aerosol photoacoustic cells using a finite element model. Part 2: Application to a two-resonator cell. Aerosol. Sci. Technol. 2019, 53, 1128–1148. [Google Scholar] [CrossRef] [Green Version]
- Sim, J.Y.; Ahn, C.-G.; Huh, C.; Chung, K.H.; Jeong, E.-J.; Kim, B.K. Synergetic resonance matching of a microphone and a photoacoustic cell. Sensors 2017, 17, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Busaidy, S.A.S.; Baumann, B.; Wolff, M.; Duggen, L. Modelling of open photoacoustic resonators. Photoacoustics 2020, 18, 100161. [Google Scholar] [CrossRef] [PubMed]
- El-Busaidy, S.A.S.; Baumann, B.; Wolff, M.; Duggen, L.; Bruhns, H. Experimental and numerical investigation of a photoacoustic resonator for solid samples: Towards a Non-Invasive Glucose Sensor. Sensors 2019, 19, 2889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comsol Multiphysics Optimization Module User’s Guide Version 5.4; COMSOL Multiphysics: Stockholm, Sweden, 2018.
- MATLAB-Homepage. Available online: https://www.mathworks.com (accessed on 14 January 2021).
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
Dimensions in mm | |
---|---|
Absorption cylinder length | 0.7681 |
Absorption cylinder radius | 1.2706 |
Cavity cylinder length | 15.2713 |
Cavity cylinder radius | 4.0074 |
Resonance cylinder length | 8.1146 |
Resonance cylinder radius | 1.0105 |
Resonance cylinder position | 6.1067 |
Optimization Variables | Range (mm) |
---|---|
Resonance cylinder length | 1–8 |
Resonance cylinder position | 6–8 |
Cavity cylinder length | 16.9–17.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Busaidy, S.; Baumann, B.; Wolff, M.; Duggen, L. Shape Optimization of an Open Photoacoustic Resonator. Appl. Sci. 2021, 11, 2571. https://doi.org/10.3390/app11062571
El-Busaidy S, Baumann B, Wolff M, Duggen L. Shape Optimization of an Open Photoacoustic Resonator. Applied Sciences. 2021; 11(6):2571. https://doi.org/10.3390/app11062571
Chicago/Turabian StyleEl-Busaidy, Said, Bernd Baumann, Marcus Wolff, and Lars Duggen. 2021. "Shape Optimization of an Open Photoacoustic Resonator" Applied Sciences 11, no. 6: 2571. https://doi.org/10.3390/app11062571
APA StyleEl-Busaidy, S., Baumann, B., Wolff, M., & Duggen, L. (2021). Shape Optimization of an Open Photoacoustic Resonator. Applied Sciences, 11(6), 2571. https://doi.org/10.3390/app11062571