Thermodynamic Analysis of Compressed Air Energy Storage (CAES) Reservoirs in Abandoned Mines Using Different Sealing Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Statement
2.2. Analytical Model
2.3. CFD Numerical Model
2.3.1. Model Geometry, Mesh and Boundary Conditions
2.3.2. Mesh Sensitivity Study
3. Results and Discussion
3.1. Analytical Model Results
3.2. Numerical Model Results
3.3. Comparative Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
A1 | Contact surface between air-sealing layer (m2) |
A2 | Contact surface between sealing layer-concrete (m2) |
A3 | Contact surface between concrete-sandstone (m2) |
A4 | Contact surface between sandstone-exterior (m2) |
Cpc | Specific heat at constant pressure for concrete (J kg−1 K−1) |
Cps | Specific heat at constant pressure for the sealing layer (J kg−1 K−1) |
Cpss | Specific heat at constant pressure for sandstone layer (J kg−1 K−1) |
Cv | Specific heat at constant volume (J kg−1 K−1) |
e | Specific energy (J kg−1) |
g | Gravity acceleration (m s−2) |
h | Heat transfer coefficient (W m−2 K−1) |
Kc | Thermal conductivity of sealing layer (W m−1 K−1) |
Ks | Thermal conductivity of sealing layer (W m−1 K−1) |
Kss | Thermal conductivity of sandstone (W m−1 K−1) |
L | Tunnel length (m) |
ṁ | Air mass flow rate in the charge period (kg s−1) |
ṁout | Air mass flow rate in the discharge period (kg s−1) |
Nu | Nusselt number (-) |
Pa | Air pressure (MPa) |
Pc | Air pressure at critical conditions (MPa) |
Surface heat transfer (W m−2) | |
r1 | Equivalent radius of sealing layer (m) |
r2 | Equivalent radius of concrete lining (m) |
r3 | Equivalent radius of sandstone (m) |
r4 | Equivalent radius of external walls (m) |
Ra | Rayleigh number (-) |
Re | Reynolds number (-) |
S | Tunnel cross section (m2) |
t | Time (s) |
T1 | Temperature on the sealing layer wall (K) |
T2 | Temperature on the concrete lining wall (K) |
T3 | Temperature on the sandstone rock mass wall (K) |
T4 | External temperature (K) |
Ta | Air temperature (K) |
Tc | Air temperature at critical conditions (K) |
Uc | Concrete transmittance (W K−1) |
Uh | Convection transmittance (W m−2 K−1) |
Us | Sealing layer transmittance (W K−1) |
Uss | Sandstone transmittance (W K−1) |
v | Air velocity (m s−1) |
Net work (W) | |
V | Tunnel volume (m3) |
Z | Compressibility factor (-) |
β | Volumetric thermal expansion coefficient |
μ | Dynamic viscosity (kg m−1 s−1) |
ρa | Air density (kg m−3) |
References
- Gallo, A.; Simões-Moreira, J.; Costa, H.; Santos, M.; Dos Santos, E.M. Energy storage in the energy transition context: A technology review. Renew. Sustain. Energy Rev. 2016, 65, 800–822. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, K.; Ma, L.; Wang, J.; Dooner, M.; Miao, S.; Li, J.; Wang, D. Overview of Compressed Air Energy Storage and Technology Development. Energies 2017, 10, 991. [Google Scholar] [CrossRef] [Green Version]
- Sameer, H.; Johannes, L. A review of large-scale electrical energy storage. Int. J. Energy Storage 2015, 39, 1179–1195. [Google Scholar]
- Pujades, E.; Willems, T.; Bodeux, S.; Orban, P.; Dassargues, A. Underground Pumped Storage Hydroelectricity Using Aban-doned Works (Deep Mines or Open Pits) and the Impact on Groundwater Flow. Hydrogeol. J. 2016, 24, 1531–1546. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, J.; Loredo, J.; Galdo, M.; Fernández-Oro, J.M. Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance. Renew. Energy 2019, 134, 1381–1391. [Google Scholar] [CrossRef]
- Lutyński, M. An overview of potential benefits and limitations of Compressed Air Energy Storage in abandoned coal mines. IOP Conf. Ser. Mater. Sci. Eng. 2017, 268, 012006. [Google Scholar] [CrossRef]
- Menéndez, J.; Fernández-Oro, J.M.; Loredo, J. Economic Feasibility of Underground Pumped Storage Hydropower Plants Providing Ancillary Services. Appl. Sci. 2020, 10, 3947. [Google Scholar] [CrossRef]
- Menéndez, J.; Ordóñez, A.; Álvarez, R.; Loredo, J. Energy from closed mines: Underground energy storage and geothermal applications. Renew. Sustain. Energy Rev. 2019, 108, 498–512. [Google Scholar] [CrossRef]
- Menéndez, J.; Schmidt, F.; Konietzky, H.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J.; Díaz-Aguado, M.B. Stability analysis of the underground infrastructure for pumped storage hydropower plants in closed coal mines. Tunn. Undergr. Space Technol. 2019, 94, 103117. [Google Scholar] [CrossRef]
- Menéndez, J.; Schmidt, F.; Konietzky, H.; Sánchez, A.B.; Loredo, J. Empirical Analysis and Geomechanical Modelling of an Underground Water Reservoir for Hydroelectric Power Plants. Appl. Sci. 2020, 10, 5853. [Google Scholar] [CrossRef]
- Winde, F.; Kaiser, F.; Erasmus, E. Exploring the use of deep level gold mines in South Africa for underground pumped hy-droelectric energy storage schemes. Renew. Sustain. Energy Rev. 2016, 78, 668–682. [Google Scholar] [CrossRef]
- Menéndez, J.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J. Efficiency analysis of underground pumped storage hydropower plants. J. Energy Storage 2020, 28, 101234. [Google Scholar] [CrossRef]
- Odukomaiya, A.; Abu-Heiba, A.; Gluesenkamp, K.R.; Abdelaziz, O.; Jackson, R.K.; Daniel, C.; Graham, S.; Momen, A.M. Thermal analysis of near-isothermal compressed gas energy storage system. Appl. Energy 2016, 179, 948–960. [Google Scholar] [CrossRef]
- Tola, V.; Meloni, V.; Spadaccini, F.; Cau, G. Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems. Energy Convers. Manag. 2017, 151, 343–356. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, J.H. A comparative research of two adiabatic compressed air energy storage systems. Energy Convers. Manag. 2016, 108, 566–578. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Y.; Li, X.; Xu, J. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system. Energy Convers. Manag. 2014, 86, 1031–1044. [Google Scholar] [CrossRef]
- Kushnir, R.; Dayan, A.; Ullmann, A. Temperature and pressure variations within compressed air energy storage caverns. Int. J. Heat Mass Transf. 2012, 55, 5616–5630. [Google Scholar] [CrossRef]
- Kushnir, R.; Ullmann, A.; Dayan, A. Thermodynamic Models for the Temperature and Pressure Variations Within Adiabatic Caverns of Compressed Air Energy Storage Plants. J. Energy Resour. Technol. 2012, 134, 021901. [Google Scholar] [CrossRef]
- Safaei, H.; Aziz, M.J. Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled. Energies 2017, 10, 1020. [Google Scholar] [CrossRef] [Green Version]
- Geissbühler, L.; Becattini, V.; Zanganeh, G.; Zavattoni, S.; Barbato, M.; Haselbacher, A.; Steinfeld, A. Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 1: Plant description and tests with sensible thermal-energy storage. J. Energy Storage 2018, 17, 129–139. [Google Scholar] [CrossRef]
- Becattini, V.; Geissbühler, L.; Zanganeh, G.; Haselbacher, A.; Steinfeld, A. Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 2: Tests with combined sensible/latent thermal-energy storage. J. Energy Storage 2018, 17, 140–152. [Google Scholar] [CrossRef]
- Schmidt, F.; Menéndez, J.; Konietzky, H.; Pascual-Muñoz, P.; Castro, J.; Loredo, J.; Sánchez, A.B. Converting closed mines into giant batteries: Effects of cyclic loading on the geomechanical performance of underground compressed air energy storage systems. J. Energy Storage 2020, 32, 101882. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, P.; Tang, D.; Zhao, H.; Li, Y. Experimental and Numerical Investigations of Small-Scale Lined Rock Cavern at Shallow Depth for Compressed Air Energy Storage. Rock Mech. Rock Eng. 2020, 53, 2671–2683. [Google Scholar] [CrossRef]
- Zhou, S.-W.; Xia, C.-C.; Zhao, H.-B.; Mei, S.-H.; Zhou, Y. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage. J. Geophys. Eng. 2017, 14, 1382–1398. [Google Scholar] [CrossRef]
- Zhou, S.-W.; Xia, C.-C.; Du, S.-G.; Zhang, P.-Y.; Zhou, Y. An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage. Rock Mech. Rock Eng. 2014, 48, 749–770. [Google Scholar] [CrossRef]
- Khaledi, K.; Mahmoudi, E.; Datcheva, M.; Schanz, T. Analysis of compressed air storage caverns in rock salt considering thermo-mechanical cyclic loading. Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Li, W.; Miao, X.; Yang, C. Failure analysis for gas storage salt cavern by thermo-mechanical modelling considering rock salt creep. J. Energy Storage 2020, 32, 102004. [Google Scholar] [CrossRef]
- Barbour, E.; Mignard, D.; Ding, Y.; Li, Y. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage. Appl. Energy 2015, 155, 804–815. [Google Scholar] [CrossRef] [Green Version]
- Rutqvist, J.; Kim, H.-M.; Ryu, D.-W.; Synn, J.-H.; Song, W.-K. Modeling of coupled thermodynamic and geomechanical per-formance of underground compressed air energy storage in lined rock caverns. Int. J. Rock Mech. Min. Sci. 2012, 52, 71–81. [Google Scholar] [CrossRef]
- Deng, K.; Zhang, K.; Xue, X.; Zhou, H. Design of a New Compressed Air Energy Storage System with Constant Gas Pressure and Temperature for Application in Coal Mine Roadways. Energies 2019, 12, 4188. [Google Scholar] [CrossRef] [Green Version]
- Woodfield, P.L.; Monde, M.; Mitsutake, Y. Measurement of Averaged Heat Transfer Coefficients in High-Pressure Vessel during Charging with Hydrogen, Nitrogen or Argon Gas. J. Therm. Sci. Technol. 2007, 2, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Heath, M.; Woodfield, P.L.; Hall, W.; Monde, M. An experimental investigation of convection heat transfer during filling of a composite-fibre pressure vessel at low Reynolds number. Exp. Therm. Fluid Sci. 2014, 54, 151–157. [Google Scholar] [CrossRef] [Green Version]
Material | Specific Heat (J kg−1 K−1) | Thermal Conductivity (W m−1 K−1) | Volume (m3) | Density KN m−3 |
---|---|---|---|---|
Air | 1006 | 0.0242 | 200.53 | 0.0117 |
Reinforced concrete | 1000 | 1.60 | 195.26 | 23 |
Sandstone | 711 | 5.00 | 2605 | 25 |
Sealing layer (FRP) | 384 | 0.40 | 7.24 | 8.82 |
Sealing layer (Steel) | 500 | 45 | 7.24 | 76.5 |
Mesh Cells ×106 | Thermal Energy (kWh) | Error (%) | Computational Time (h) |
---|---|---|---|
1.44 | 53.96 | 7.14 | 56 |
2.01 | 56.76 | 2.33 | 78 |
2.69 | 57.72 | 0.68 | 116 |
3.47 | 58.11 | - | 147 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, L.Á.d.; Menéndez, J.; Bernardo-Sánchez, A.; Galdo, M.; Loredo, J.; Fernández-Oro, J.M. Thermodynamic Analysis of Compressed Air Energy Storage (CAES) Reservoirs in Abandoned Mines Using Different Sealing Layers. Appl. Sci. 2021, 11, 2573. https://doi.org/10.3390/app11062573
Prado LÁd, Menéndez J, Bernardo-Sánchez A, Galdo M, Loredo J, Fernández-Oro JM. Thermodynamic Analysis of Compressed Air Energy Storage (CAES) Reservoirs in Abandoned Mines Using Different Sealing Layers. Applied Sciences. 2021; 11(6):2573. https://doi.org/10.3390/app11062573
Chicago/Turabian StylePrado, Laura Álvarez de, Javier Menéndez, Antonio Bernardo-Sánchez, Mónica Galdo, Jorge Loredo, and Jesús Manuel Fernández-Oro. 2021. "Thermodynamic Analysis of Compressed Air Energy Storage (CAES) Reservoirs in Abandoned Mines Using Different Sealing Layers" Applied Sciences 11, no. 6: 2573. https://doi.org/10.3390/app11062573
APA StylePrado, L. Á. d., Menéndez, J., Bernardo-Sánchez, A., Galdo, M., Loredo, J., & Fernández-Oro, J. M. (2021). Thermodynamic Analysis of Compressed Air Energy Storage (CAES) Reservoirs in Abandoned Mines Using Different Sealing Layers. Applied Sciences, 11(6), 2573. https://doi.org/10.3390/app11062573