Multi-Scale Ensemble Learning for Thermal Image Enhancement
Abstract
:1. Introduction
2. Background
3. Proposed Network
3.1. Sub-Network
3.1.1. Feature Extraction Module
3.1.2. Mapping Module
3.1.3. Reconstruction Module
3.2. Mixed Feature Module
3.3. Combination Module
3.4. Training
4. Experiments and Discussion
4.1. Experimental Setup
4.2. Ablation Studies
4.3. Comparative Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PSNR | Peak signal-to-noise ratio |
SSIM | Structural similarity |
MFM | Mixed feature module |
References
- Kwaśniewska, A.; Rumiński, J.; Rad, P. Deep features class activation map for thermal face detection and tracking. In Proceedings of the 2017 10th international conference on human system interactions (HSI), Ulsan, Korea, 17–19 July 2017; pp. 41–47. [Google Scholar]
- Fernandes, S.L.; Rajinikanth, V.; Kadry, S. A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 2019, 8, 31–36. [Google Scholar] [CrossRef]
- Tong, K.; Wang, Z.; Si, L.; Tan, C.; Li, P. A Novel Pipeline Leak Recognition Method of Mine Air Compressor Based on Infrared Thermal Image Using IFA and SVM. Appl. Sci. 2020, 10, 5991. [Google Scholar] [CrossRef]
- Baek, J.; Hong, S.; Kim, J.; Kim, E. Efficient Pedestrian Detection at Nighttime Using a Thermal Camera. Sensors 2017, 17, 1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippini, C.; Perpetuini, D.; Cardone, D.; Chiarelli, A.M.; Merla, A. Thermal infrared imaging-based affective computing and its application to facilitate human robot interaction: A review. Appl. Sci. 2020, 10, 2924. [Google Scholar] [CrossRef]
- Andoga, R.; Fozo, L.; Schrötter, M.; Češkovič, M.; Szabo, S.; Breda, R.; Schreiner, M. Intelligent thermal imaging-based diagnostics of turbojet engines. Appl. Sci. 2019, 9, 2253. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hossain, M.S.; Alrajeh, N.A.; Guizani, N. B5G and explainable deep learning assisted healthcare vertical at the edge: COVID-I9 perspective. IEEE Netw. 2020, 34, 98–105. [Google Scholar] [CrossRef]
- Al-Humairi, S.N.S.; Kamal, A.A.A. Opportunities and challenges for the building monitoring systems in the age-pandemic of COVID-19: Review and prospects. Innov. Infrastruct. Solut. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Taylor, W.; Abbasi, Q.H.; Dashtipour, K.; Ansari, S.; Shah, S.A.; Khalid, A.; Imran, M.A. A Review of the State of the Art in Non-Contact Sensing for COVID-19. Sensors 2020, 20, 5665. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, N.; Hwang, S.; Kweon, I.S. Thermal Image Enhancement using Convolutional Neural Network. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 223–230. [Google Scholar]
- Lee, K.; Lee, J.; Lee, J.; Hwang, S.; Lee, S. Brightness-based convolutional neural network for thermal image enhancement. IEEE Access 2017, 5, 26867–26879. [Google Scholar] [CrossRef]
- Rivadeneira, R.E.; Suárez, P.L.; Sappa, A.D.; Vintimilla, B.X. Thermal Image Superresolution Through Deep Convolutional Neural Network. In Proceedings of the International Conference on Image Analysis and Recognition, Waterloo, ON, Canada, 27–29 August 2019; pp. 417–426. [Google Scholar]
- Gupta, H.; Mitra, K. Pyramidal Edge-maps based Guided Thermal Super-resolution. arXiv 2020, arXiv:2003.06216. [Google Scholar]
- Rivadeneira, R.E.; Sappa, A.D.; Vintimilla, B.X. Thermal Image SUPER-Resolution: A Novel Architecture and Dataset. In Proceedings of the VISIGRAPP (4: VISAPP), Valleta, Malta, 27–29 February 2020; pp. 111–119. [Google Scholar]
- Cascarano, P.; Corsini, F.; Gandolfi, S.; Piccolomini, E.L.; Mandanici, E.; Tavasci, L.; Zama, F. Super-resolution of thermal images using an automatic total variation based method. Remote Sens. 2020, 12, 1642. [Google Scholar] [CrossRef]
- Yuan, L.T.; Swee, S.K.; Ping, T.C. Infrared image enhancement using adaptive trilateral contrast enhancement. Pattern Recognit. Lett. 2015, 54, 103–108. [Google Scholar] [CrossRef]
- Zeng, Q.; Qin, H.; Yan, X.; Yang, S.; Yang, T. Single infrared image-based stripe nonuniformity correction via a two-stage filtering method. Sensors 2018, 18, 4299. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ro, Y.M. Dual-Branch Structured De-Striping Convolution Network Using Parametric Noise Model. IEEE Access 2020, 8, 155519–155528. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Si, L.; Zhang, L.; Tan, C.; Xu, J. A non-reference image denoising method for infrared thermal image based on enhanced dual-tree complex wavelet optimized by fruit fly algorithm and bilateral filter. Appl. Sci. 2017, 7, 1190. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.; Kong, N.S.P. Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 2007, 53, 1752–1758. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F.; Xue, B. Infrared image enhancement through contrast enhancement by using multiscale new top-hat transform. Infrared Phys. Technol. 2011, 54, 61–69. [Google Scholar] [CrossRef]
- Van Tran, T.; Yang, B.S.; Gu, F.; Ball, A. Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2013, 38, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Kuang, X.; Sui, X.; Liu, Y.; Chen, Q.; Gu, G. Single infrared image enhancement using a deep convolutional neural network. Neurocomputing 2019, 332, 119–128. [Google Scholar] [CrossRef]
- Berg, A.; Ahlberg, J.; Felsberg, M. A thermal object tracking benchmark. In Proceedings of the 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Karlsruhe, Germany, 25–28 August 2015; pp. 1–6. [Google Scholar]
- Palmero, C.; Clapés, A.; Bahnsen, C.; Møgelmose, A.; Moeslund, T.B.; Escalera, S. Multi-modal RGB–Depth–Thermal Human Body Segmentation. Int. J. Comput. Vis. 2016, 118, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Portmann, J.; Lynen, S.; Chli, M.; Siegwart, R. People detection and tracking from aerial thermal views. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1794–1800. [Google Scholar]
- Morris, N.J.; Avidan, S.; Matusik, W.; Pfister, H. Statistics of infrared images. In Proceedings of the Computer Vision and Pattern Recognition, CVPR’07, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–7. [Google Scholar]
- Hwang, S.; Park, J.; Kim, N.; Choi, Y.; So Kweon, I. Multispectral pedestrian detection: Benchmark dataset and baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1037–1045. [Google Scholar]
- Choi, Y.; Kim, N.; Hwang, S.; Park, K.; Yoon, J.S.; An, K.; Kweon, I.S. KAIST multi-spectral day/night data set for autonomous and assisted driving. IEEE Trans. Intell. Transp. Syst. 2018, 19, 934–948. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, J.; Kuwashima, S.; Kurita, T. Fast and accurate image super resolution by deep CNN with skip connection and network in network. In Proceedings of the International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017; pp. 217–225. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1026–1034. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar]
Module | Layer | Kernel Size | Dimension | |
---|---|---|---|---|
Input | Output | |||
Extraction | Conv/PReLU | 3 × 3 | 1 | 48 |
Conv/PReLU | 3 × 3 | 48 | 48 | |
Conv/PReLU | 3 × 3 | 48 | 48 | |
Mapping | Conv/PReLU | 1 × 1 | 48 | 16 |
Conv/PReLU | 3 × 3 | 16 | 16 | |
Conv/PReLU | 3 × 3 | 16 | 16 | |
Conv/PReLU | 3 × 3 | 16 | 16 | |
Conv/PReLU | 3 × 3 | 16 | 16 | |
Conv/PReLU | 3 × 3 | 16 | 16 | |
Conv/PReLU | 1 × 1 | 16 | 48 | |
Reconstruction | Conv | 3 × 3 | 48 | 2 |
Module | Layer | Kernel Size | Dimension | |
---|---|---|---|---|
Input | Output | |||
Mixed feature | Concat | - | n × 48 | |
Reconstruction | Conv | 3 × 3 | n × 48 | 2 |
Configuration | PSNR | ||
---|---|---|---|
Scale Factor of the Test Set | |||
×2 | ×3 | ×4 | |
w/o combination and w/o mixed feature module (Figure 7a) | 39.125 | 35.877 | 33.614 |
w/ combination and w/o mixed feature module (Figure 7b) | 39.186 | 35.936 | 33.669 |
w/ combination and w/ mixed feature module (Figure 7c) | 39.281 | 36.007 | 33.687 |
Configuration | Level | PSNR | ||
---|---|---|---|---|
Scale Factor of the Test Set | ||||
×2 | ×3 | ×4 | ||
w/ combination and w/o mixed feature module (Figure 7b) | 2 | 39.186 | 35.936 | 33.669 |
3 | 39.239 | 35.949 | 33.664 | |
w/ combination and w/ mixed feature module (Figure 7c) | 2 | 39.281 | 36.007 | 33.687 |
3 | 39.325 | 36.055 | 33.735 | |
4 | 39.280 | 36.044 | 33.766 |
Methods | PSNR | SSIM | ||||
---|---|---|---|---|---|---|
Scale Factor | Scale Factor | |||||
×2 | ×3 | ×4 | ×2 | ×3 | ×4 | |
Bicubic | 36.972 | 33.899 | 31.860 | 0.955 | 0.917 | 0.876 |
TEN [10] (×2) | 37.378 | 34.143 | 31.932 | 0.955 | 0.918 | 0.875 |
TEN [10] (×3) | 36.065 | 34.350 | 32.191 | 0.944 | 0.921 | 0.880 |
TEN [10] (×4) | 34.602 | 33.694 | 32.114 | 0.930 | 0.912 | 0.877 |
TIECNN [11] (×2) | 39.196 | 34.053 | 31.846 | 0.966 | 0.921 | 0.877 |
TIECNN [11] (×3) | 34.216 | 35.752 | 32.391 | 0.938 | 0.936 | 0.886 |
TIECNN [11] (×4) | 31.352 | 33.379 | 33.258 | 0.896 | 0.913 | 0.896 |
ASR2_s [15] | 38.348 | 34.978 | 32.969 | 0.962 | 0.928 | 0.890 |
TIR-DCSCN [12] (×2) | 37.268 | - | - | 0.957 | - | - |
TIR-DCSCN [12] (×3) | - | 34.120 | - | - | 0.920 | - |
TIR-DCSCN [12] (×4) | - | - | 32.052 | - | - | 0.879 |
Ours | 39.325 | 36.055 | 33.735 | 0.966 | 0.939 | 0.904 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, Y.; Lee, K. Multi-Scale Ensemble Learning for Thermal Image Enhancement. Appl. Sci. 2021, 11, 2810. https://doi.org/10.3390/app11062810
Ban Y, Lee K. Multi-Scale Ensemble Learning for Thermal Image Enhancement. Applied Sciences. 2021; 11(6):2810. https://doi.org/10.3390/app11062810
Chicago/Turabian StyleBan, Yuseok, and Kyungjae Lee. 2021. "Multi-Scale Ensemble Learning for Thermal Image Enhancement" Applied Sciences 11, no. 6: 2810. https://doi.org/10.3390/app11062810
APA StyleBan, Y., & Lee, K. (2021). Multi-Scale Ensemble Learning for Thermal Image Enhancement. Applied Sciences, 11(6), 2810. https://doi.org/10.3390/app11062810