A Regional Geography Approach to Understanding the Environmental Changes as a Consequence of the COVID-19 Lockdown in Highly Populated Spanish Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Sources and Treatment
3. Results and Discussion
3.1. Air Temperature during 2020 and Reference Years in Highly Populated Cities in Spain
3.2. Air Quality during 2020 and Reference Years in Highly Populated Cities in Spain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Atalan, A. Is the Lockdown Important to Prevent the COVID-19 Pandemic? Effects on Psychology, Environment and Economy-Perspective. Ann Med. Surg. 2020, 56, 38–42. [Google Scholar] [CrossRef]
- Karnon, J. A Simple Decision Analysis of a Mandatory Lockdown Response to the COVID-19 Pandemic. Appl. Health Econ. Health Policy 2020, 18, 329–331. [Google Scholar] [CrossRef] [Green Version]
- Manzanedo, R.D.; Manning, P. COVID-19: Lessons for the Climate Change Emergency. Sci. Total Environ. 2020, 742, 140563. [Google Scholar] [CrossRef] [PubMed]
- Ching, J.; Kajino, M. Rethinking Air Quality and Climate Change after COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 5167. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.A.; Caldas, A.; Cleetus, R.; Dahl, K.A.; Declet-Barreto, J.; Licker, R.; Merner, L.D.; Ortiz-Partida, J.P.; Phelan, A.L.; Spanger-Siegfried, E.; et al. Compound Climate Risks in the COVID-19 Pandemic. Nat. Clim. Chang. 2020, 10, 586–588. [Google Scholar] [CrossRef]
- Prideaux, B.; Thompson, M.; Pabel, A. Lessons from COVID-19 Can Prepare Global Tourism for the Economic Transformation Needed to Combat Climate Change. Tour. Geogr. 2020, 22, 667–678. [Google Scholar] [CrossRef]
- Hepburn, C.; O’Callaghan, B.; Stern, N.; Stiglitz, J.; Zenghelis, D. Will COVID-19 Fiscal Recovery Packages Accelerate or Retard Progress on Climate Change? Oxf. Rev. Econ. Policy 2020, 36, S359–S381. [Google Scholar] [CrossRef]
- Newman AO, P. COVID, CITIES and CLIMATE: Historical Precedents and Potential Transitions for the New Economy. Urban Sci. 2020, 4, 32. [Google Scholar] [CrossRef]
- Pisano, C. Strategies for Post-COVID Cities: An Insight to Paris En Commun and Milano 2020. Sustainability 2020, 12, 5883. [Google Scholar] [CrossRef]
- Mende, M.; Misra, V. Time to Flatten the Curves on COVID-19 and Climate Change. Marketing Can Help. J. Public Policy Mark. 2021, 40, 94–96. [Google Scholar] [CrossRef]
- Tan, J.; Mu, L.; Huang, J.; Yu, S.; Chen, B.; Yin, J. An Initial Investigation of the Association between the SARS Outbreak and Weather: With the View of the Environmental Temperature and Its Variation. J. Epidemiol. Community Health 2005, 59, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. No Association of COVID-19 Transmission with Temperature or UV Radiation in Chinese Cities. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, M.F.; Ma, B.; Bashir, M.A.; Tan, D.; Bashir, M.; Komal, B. Correlation between Climate Indicators and COVID-19 Pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified Ozone Pollution in Cities during the COVID-19 Lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, D.; Regoli, F. Role of the Chronic Air Pollution Levels in the Covid-19 Outbreak Risk in Italy. Environ. Pollut. 2020, 264, 114732. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can Atmospheric Pollution Be Considered a Co-Factor in Extremely High Level of SARS-CoV-2 Lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Di Toppi, L.S.; di Toppi, L.S.; Bellini, E. Novel Coronavirus: How Atmospheric Particulate Affects Our Environment and Health. Challenges 2020, 11, 6. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y. Association between Ambient Temperature and COVID-19 Infection in 122 Cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Gutiérrez-Hernández, O.; García, L.V. On the Usefulness of the Bioclimatic Correlative Models of SARS-CoV-2. Environ. Res. 2021, 195, 110818. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, D.; Markard, J. A COVID-19 Recovery for Climate. Science 2020, 368, 447. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Latif, M.T. Air Pollution Impacts from COVID-19 Pandemic Control Strategies in Malaysia. J. Clean. Prod. 2021, 291, 125992. [Google Scholar] [CrossRef]
- Serra, P.; Vera, A.; Tulla, A.F.; Salvati, L. Beyond Urban–Rural Dichotomy: Exploring Socioeconomic and Land-Use Processes of Change in Spain (1991–2011). Appl. Geogr. 2014, 55, 71–81. [Google Scholar] [CrossRef]
- Abades Porcel, M.; Rayón Valpuesta, E. El Envejecimiento En España: ¿un Reto o Problema Social? Gerokomos 2012, 23, 151–155. [Google Scholar] [CrossRef]
- Carlucci, M.; Grigoriadis, E.; Rontos, K.; Salvati, L. Revisiting a Hegemonic Concept: Long-Term ‘Mediterranean Urbanization’ in Between City Re-Polarization and Metropolitan Decline. Appl. Spat. Anal. 2017, 10, 347–362. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Serrano-Aroca, Á. A Spatio-Temporal Analysis for Exploring the Effect of Temperature on COVID-19 Early Evolution in Spain. Sci. Total Environ. 2020, 728, 138811. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Shahzad, U.; Iqbal, N.; Shahzad, F.; Fareed, Z. Effects of Climatological Parameters on the Outbreak Spread of COVID-19 in Highly Affected Regions of Spain. Environ. Sci. Pollut. Res. 2020, 27, 39657–39666. [Google Scholar] [CrossRef]
- Paez, A.; Lopez, F.A.; Menezes, T.; Cavalcanti, R.; Pitta, M.G.D.R. A Spatio-Temporal Analysis of the Environmental Correlates of COVID-19 Incidence in Spain. Geogr. Anal. 2020. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in Air Quality during the Lockdown in Barcelona (Spain) One Month into the SARS-CoV-2 Epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Petetin, H.; Bowdalo, D.; Soret, A.; Guevara, M.; Jorba, O.; Serradell, K.; Pérez García-Pando, C. Meteorology-Normalized Impact of the COVID-19 Lockdown upon NO2 Pollution in Spain. Atmos. Chem. Phys. 2020, 20, 11119–11141. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in Air Pollution during COVID-19 Lockdown in Spain: A Multi-City Study. J. Environ. Sci. 2021, 101, 16–26. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; World Meteorological Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Ribas, A.; Olcina, J.; Sauri, D. More Exposed but Also More Vulnerable? Climate Change, High Intensity Precipitation Events and Flooding in Mediterranean Spain. Disaster Prev. Manag. Int. J. 2020, 29, 229–248. [Google Scholar] [CrossRef]
- Bárcena-Martín, E.; Molina, J.; Hueso, P.; Ruiz-Sinoga, J.D. A Class of Indices and a Graphical Tool to Monitor Temperature Anomalies. Air Soil Water Res. 2020, 13, 1178622120938384. [Google Scholar] [CrossRef]
- Senciales-González, J.M.; Rodrigo-Comino, J.; Smith, P. Surveying Topographical Changes and Climate Variations to Detect the Urban Heat Island in the City of Málaga (Spain). Cuad. Investig. Geogr. 2020, 46, 521–543. [Google Scholar] [CrossRef] [Green Version]
- Royé, D. The Effects of Hot Nights on Mortality in Barcelona, Spain. Int J. Biometeorol. 2017, 61, 2127–2140. [Google Scholar] [CrossRef] [PubMed]
- Salvati, A.; Coch Roura, H.; Cecere, C. Assessing the Urban Heat Island and Its Energy Impact on Residential Buildings in Mediterranean Climate: Barcelona Case Study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Aram, F.; Solgi, E.; Baghaee, S.; Higueras García, E.; Mosavi, A.; Band, S.S. How Parks Provide Thermal Comfort Perception in the Metropolitan Cores; a Case Study in Madrid Mediterranean Climatic Zone. Clim. Risk Manag. 2020, 30, 100245. [Google Scholar] [CrossRef]
- Royé, D.; Zarrabeitia, M.T.; Riancho, J.; Santurtún, A. A Time Series Analysis of the Relationship between Apparent Temperature, Air Pollutants and Ischemic Stroke in Madrid, Spain. Environ. Res. 2019, 173, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, J.; Gu, Q.; Du, P.; Liang, H.; Dong, Q. Optimal Temperature Zone for the Dispersal of COVID-19. Sci. Total Environ. 2020, 736, 139487. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of Temperature Variation and Humidity on the Death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.-L.; Dai, D.-W.; Huang, Z.-Y.; Ma, Z.; Guan, Y.-J. Air Pollution and Temperature Are Associated with Increased COVID-19 Incidence: A Time Series Study. Int. J. Infect. Dis. 2020, 97, 278–282. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the Relationship between Ground Levels of Ozone (O3) and Nitrogen Dioxide (NO2) with Coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef]
- West, J.J.; Szopa, S.; Hauglustaine, D.A. Human Mortality Effects of Future Concentrations of Tropospheric Ozone. Comptes Rendus Geosci. 2007, 339, 775–783. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and Climate Influences on Tropospheric Ozone: A Review of Natural Sources, Chemistry, and Transport Patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef] [Green Version]
- Archer, C.L.; Brodie, J.F.; Rauscher, S.A. Global Warming Will Aggravate Ozone Pollution in the U.S. Mid-Atlantic. J. Appl. Meteorol. Climatol. 2019, 58, 1267–1278. [Google Scholar] [CrossRef]
- Ballesteros, H.O.B.; Aristizabal, G.E.L. Gases de Efecto Invernadero y el Cambio Climatico; Instituto de Hidrología, Meteorología y Estudios Ambientales—IDEAM: Bogota, Columbia, 2007; p. 102. [Google Scholar]
- Atkinson, R.W.; Butland, B.K.; Anderson, H.R.; Maynard, R.L. Long-Term Concentrations of Nitrogen Dioxide and Mortality. Epidemiology 2018, 29, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, A.S.; Araki, S.; Sakai, R.; Sato, H. An Ex Post Cost-Benefit Analysis of the Nitrogen Dioxide Air Pollution Control Program in Tokyo. J. Air Waste Manag. Assoc. 2000, 50, 391–410. [Google Scholar] [CrossRef] [Green Version]
- Latza, U.; Gerdes, S.; Baur, X. Effects of Nitrogen Dioxide on Human Health: Systematic Review of Experimental and Epidemiological Studies Conducted between 2002 and 2006. Int. J. Hyg. Environ. Health 2009, 212, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, K.; Xu, X.; Shen, H.; Zhu, X.; Zhang, Y.; Hu, Y.; Shen, G. Substantial Changes in Nitrogen Dioxide and Ozone after Excluding Meteorological Impacts during the COVID-19 Outbreak in Mainland China. Environ. Sci. Technol. Lett. 2020, 7, 402–408. [Google Scholar] [CrossRef]
- Ogen, Y. Assessing Nitrogen Dioxide (NO2) Levels as a Contributing Factor to Coronavirus (COVID-19) Fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. Ambient Nitrogen Dioxide Pollution and Spreadability of COVID-19 in Chinese Cities. Ecotoxicol. Environ. Saf. 2021, 208, 111421. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K. Effects of Soil Moisture and Temperature on NO, NO2, and N2O Emissions from European Forest Soils. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, Á.; Mazzei, V.; et al. Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Orro, A.; Novales, M.; Monteagudo, Á.; Pérez-López, J.-B.; Bugarín, M.R. Impact on City Bus Transit Services of the COVID–19 Lockdown and Return to the New Normal: The Case of a Coruña (Spain). Sustainability 2020, 12, 7206. [Google Scholar] [CrossRef]
- Santiago, I.; Moreno-Munoz, A.; Quintero-Jiménez, P.; Garcia-Torres, F.; Gonzalez-Redondo, M.J. Electricity Demand during Pandemic Times: The Case of the COVID-19 in Spain. Energy Policy 2021, 148, 111964. [Google Scholar] [CrossRef]
- Lu, F.; Xu, D.; Cheng, Y.; Dong, S.; Guo, C.; Jiang, X.; Zheng, X. Systematic Review and Meta-Analysis of the Adverse Health Effects of Ambient PM2.5 and PM10 Pollution in the Chinese Population. Environ. Res. 2015, 136, 196–204. [Google Scholar] [CrossRef]
- Kappos, A.D.; Bruckmann, P.; Eikmann, T.; Englert, N.; Heinrich, U.; Höppe, P.; Koch, E.; Krause, G.H.M.; Kreyling, W.G.; Rauchfuss, K.; et al. Health Effects of Particles in Ambient Air. Int. J. Hyg. Environ. Health 2004, 207, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Guo, B.; Han, M.; Tian, M.; Zhang, J. Particulate Matters Pollution Characteristic and the Correlation between PM (PM2.5, PM10) and Meteorological Factors during the Summer in Shijiazhuang. J. Environ. Prot. 2015, 6, 457. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, Y.; Wang, Y.; Liu, N.; Hong, Y. Temporal and Spatial Analyses of Particulate Matter (PM10 and PM2.5) and Its Relationship with Meteorological Parameters over an Urban City in Northeast China. Atmos. Res. 2017, 198, 185–193. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.J.; Ma, B.J.; Bilal, K.B.; Bashir, M.A.; Farooq, T.H.; Iqbal, N.; Bashir, M. Correlation between Environmental Pollution Indicators and COVID-19 Pandemic: A Brief Study in Californian Context. Environ. Res. 2020, 187, 109652. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of Lockdown amid COVID-19 Pandemic on Air Quality of the Megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef] [PubMed]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 Lockdown on NO2, O3, PM2.5 and PM10 Concentrations and Assessing Air Quality Changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef] [PubMed]
- Magazzino, C.; Mele, M.; Schneider, N. The Relationship between Air Pollution and COVID-19-Related Deaths: An Application to Three French Cities. Appl. Energy 2020, 279, 115835. [Google Scholar] [CrossRef] [PubMed]
- Cohan, D.S.; Krakauer, N.Y.; Corbett, J.J.; Rife, D.; Zhang, R.; Halberstadt, A.R.; Parks, L.Y. Could Cuts in Sulfur from Coal and Ships Help Explain the 2015 Spurt in Northern Hemisphere Temperatures? IEEE Earthzine 2016. Available online: https://earthzine.org/could-cuts-in-sulfur-from-coal-and-ships-help-explain-the-2015-spurt-in-northern-hemisphere-temperatures/.
- Lahcen, B.; Brusselaers, J.; Vrancken, K.; Dams, Y.; Da Silva Paes, C.; Eyckmans, J.; Rousseau, S. Green Recovery Policies for the COVID-19 Crisis: Modelling the Impact on the Economy and Greenhouse Gas Emissions. Environ. Resour. Econ. 2020, 76, 731–750. [Google Scholar] [CrossRef]
- Mukanjari, S.; Sterner, T. Charting a “Green Path” for Recovery from COVID-19. Environ. Resour. Econ. 2020, 76, 825–853. [Google Scholar] [CrossRef]
TMin | TMax | Av. T | ||
---|---|---|---|---|
Madrid | 2020 | 8.94 | 22.24 | 16.05 |
10 years | 9.92 ± 0.54 | 21.69 ± 0.85 | 16.75 ± 0.81 | |
30 years | 9.53 ± 0.84 | 21.15 ± 0.77 | 16.05 ± 0.61 | |
Mar-20 | 5.18 | 16.62 | 11.16 | |
Av. March | 5.1 ± 1.12 | 16.43 ± 2.06 | 11.4 ± 1.68 | |
Apr-20 | 8.02 | 19.53 | 13.49 | |
Av. April | 7.26 ± 1.36 | 18.83 ± 2.14 | 13.73 ± 1.79 | |
May-20 | 10.82 | 26.84 | 19.35 | |
Av. May | 10.87 ± 1.43 | 23.57 ± 2.21 | 18.27 ± 2.01 | |
Barcelona | 2020 | 11.44 | 22.37 | 17.09 |
10 years | 12.6 ± 0.47 | 21.15 ± 0.50 | 16.91 ± 0.37 | |
30 years | 12.6 ± 0.68 | 20.81 ± 0.67 | 16.48 ± 0.9 | |
Mar-20 | 7.18 | 17.77 | 12.69 | |
Av. March | 8.04 ± 0.88 | 16.51 ± 0.96 | 12.14 ± 0.72 | |
Apr-20 | 9.63 | 19.83 | 15.2 | |
Av. April | 10.29 ± 1.30 | 18.55 ± 0.86 | 14.26 ± 0.86 | |
May-20 | 13.99 | 25.69 | 19.81 | |
Av. May | 13.74 ± 1.41 | 21.72 ± 1.40 | 17.58 ± 1.19 | |
Málaga | 2020 | 15.97 | 23.12 | 19.05 |
10 years | 14.64 ± 0.44 | 23.94 ± 0.45 | 18.66 ± 0.36 | |
30 years | 14.13 ± 0.66 | 23.55 ± 0.55 | 18.73 ± 0.5 | |
Mar-20 | 11.96 | 18.91 | 14.87 | |
Av. March | 10.1 ± 0.88 | 19.6 ± 0.92 | 14.8 ± 0.70 | |
Apr-20 | 13.94 | 19.01 | 16.18 | |
Av. April | 11.8 ± 1.21 | 21.8 ± 1.01 | 16.7 ± 0.94 | |
May-20 | 17.59 | 24.1 | 20.77 | |
Av. May | 14.8 ± 1.03 | 24.6 ± 1.01 | 19.7 ± 0.94 | |
Sevilla | 2020 | 14.03 | 26.01 | 19.64 |
10 years | 13.11 ± 0.44 | 25.94 ± 0.67 | 19 ± 0.38 | |
30 years | 12.93 ± 0.7 | 26 ± 0.54 | 19.32 ± 0.66 | |
Mar-20 | 10.31 | 21.16 | 15.4 | |
Av. March | 9.18 ± 1.04 | 21.93 ± 1.98 | 15.52 ± 1.45 | |
Apr-20 | 12.33 | 22.28 | 17.17 | |
Av. April | 11.17 ± 1.42 | 24.16 ± 1.72 | 17.67 ± 1.53 | |
May-20 | 16.76 | 29.86 | 22.96 | |
Av. May | 14.32 ± 1.21 | 28.27 ± 2.07 | 21.44 ± 1.68 | |
Valencia | 2020 | 13.61 | 25.77 | 18.6 |
10 years | 12.45 ± 0.63 | 23.55 ± 0.66 | 18.19 ± 0.42 | |
30 years | 12.4 ± 0.61 | 23.27 ± 0.63 | 17.74 ± 0.58 | |
Mar-20 | 10.11 | 19.26 | 14.47 | |
Av. March | 7.73 ± 1.13 | 19.46 ± 1.5 | 13.44 ± 1.18 | |
Apr-20 | 11.76 | 23.25 | 16.11 | |
Av. April | 10.02 ± 0.91 | 21.44 ± 1.18 | 15.68 ± 0.98 | |
May-20 | 15.7 | 29.05 | 21.19 | |
Av. May | 13.51 ± 1.25 | 24.7 ± 1.29 | 19.15 ± 1.16 |
Values (μg/m3) (*) | Madrid | Barcelona | Valencia | Sevilla | Málaga |
---|---|---|---|---|---|
2020 | 20.94 | 21.05 | 21.14 | 21.89 | 27.91 |
Annual values (10 years) | 30.61 ± 0.79 | 34.88 ± 1.26 | 37.81 ± 1.75 | 27.1 ± 0.86 | 37.95 ± 2.57 |
Mar-20 | 22.61 | 24.45 | 22.97 | 24.25 | 28.93 |
Av. March | 31.8 ± 2.59 | 31.37 ± 4.52 | 33.91 ± 3.01 | 26.44 ± 2.19 | 34.81 ± 4.53 |
Apr-20 | 26.06 | 29.95 | 29.15 | 26.5 | 35.15 |
Av. April | 36.34 ± 3.08 | 36.46 ± 2.88 | 38.73 ± 2.36 | 29.65 ± 2.32 | 37.82 ± 5.13 |
May-20 | 28.64 | 27.19 | 28.74 | 28.37 | 34.81 |
Av. May | 39.07 ± 1.84 | 36.36 ± 1.38 | 38.51 ± 3.26 | 33.26 ± 2.18 | 41.42 ± 2.96 |
Values (μg/m3) | Madrid | Barcelona | Valencia | Sevilla | Málaga |
---|---|---|---|---|---|
2020 | 12.2 | 11.66 | 6.15 | 5.78 | 5.63 |
Annual values (10 years) | 25.58 ± 2.03 | 13.79 ± 0.64 | 10.03 ± 2.56 | 16.18 ± 1.86 | 8.17 ± 0.54 |
Mar-20 | 10.12 | 10.97 | 4.61 | 5.11 | 5.05 |
Av. March | 24.99 ± 1.72 | 14.91 ± 3.02 | 12.13 ± 2.82 | 16.37 ± 2.15 | 7.46 ± 1.38 |
Apr-20 | 5.29 | 6.7 | 2.55 | 3.13 | 2.62 |
Av. April | 21.45 ± 1.09 | 13.71 ± 1.78 | 9.17 ± 3.0 | 15.85 ± 0.58 | 7.33 ± 0.44 |
May-20 | 5.96 | 7.08 | 3.67 | 3.59 | 4.07 |
Av. May | 21.22 ± 2.53 | 12.75 ± 1.43 | 6.99 ± 1.56 | 15.01 ± 2.2 | 7.41 ± 1.32 |
Values (μg/m3) | Madrid | Barcelona | Valencia | Sevilla | Málaga |
---|---|---|---|---|---|
2020 | 2.58 | 1.05 | 2.09 | 2.07 | 2.93 |
Annual values (10 years) | 3.68 ± 1.1 | 1.05 ± 0.13 | 1.94 ± 0.29 | 1.23 ± 0.14 | 5.29 ± 0.61 |
Mar-20 | 2.13 | 1.08 | 2.12 | 2.19 | 2.89 |
Av. March | 3.9 ± 1.86 | 0.51 ± 0.29 | 2.79 ± 2.25 | 1.28 ± 0.31 | 5.51 ± 2,13 |
Apr-20 | 2.15 | 1 | 2.14 | 2.13 | 2.73 |
Av. April | 3.23 ± 1.63 | 0.53 ± 0.09 | 1.77 ± 0.57 | 1.13 ± 0.12 | 5.63 ± 2.17 |
May-20 | 2.44 | 1.02 | 2.18 | 2.28 | 3.34 |
Av. May | 3.29 ± 1.67 | 0.57 ± 0.26 | 1.6 ± 0.35 | 1.19 ± 0.49 | 5.32 ± 1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo-Comino, J.; Senciales-González, J.M. A Regional Geography Approach to Understanding the Environmental Changes as a Consequence of the COVID-19 Lockdown in Highly Populated Spanish Cities. Appl. Sci. 2021, 11, 2912. https://doi.org/10.3390/app11072912
Rodrigo-Comino J, Senciales-González JM. A Regional Geography Approach to Understanding the Environmental Changes as a Consequence of the COVID-19 Lockdown in Highly Populated Spanish Cities. Applied Sciences. 2021; 11(7):2912. https://doi.org/10.3390/app11072912
Chicago/Turabian StyleRodrigo-Comino, Jesús, and José María Senciales-González. 2021. "A Regional Geography Approach to Understanding the Environmental Changes as a Consequence of the COVID-19 Lockdown in Highly Populated Spanish Cities" Applied Sciences 11, no. 7: 2912. https://doi.org/10.3390/app11072912
APA StyleRodrigo-Comino, J., & Senciales-González, J. M. (2021). A Regional Geography Approach to Understanding the Environmental Changes as a Consequence of the COVID-19 Lockdown in Highly Populated Spanish Cities. Applied Sciences, 11(7), 2912. https://doi.org/10.3390/app11072912