Analysis of the Experimental Integration of Thermoelectric Generators in Photovoltaic–Thermal Hybrid Panels
Abstract
:1. Introduction
2. Materials and Methods
- The thermal behavior of the small pipes of the water collector is assumed identical inside all tubes. For this reason, only one of the 10 pipes is represented;
- Both models of the panel (PVT and PVT + TEG) have been simulated under steady state conditions;
- Water mass flow inside the simulated pipe is considered to be incompressible and laminar;
- The thermophysical properties of the different materials remain constant during the study period.
- External surfaces of the PVT panels are adiabatic. .
- Velocity of the fluid in the solid walls is null. .
- In the wall of a solid, velocity and temperature of the fluid are that of the solid element. .
- Inlet conditions are: T = ; u = 0; v = 0 and w = −.
- Outlet condition is P = 0.
3. Results and Discussion
3.1. Inlet Temperature
3.2. Ambient Temperature
3.3. Inlet Mass Flow
3.4. Solar Irradiation
3.5. Thermal Profile of a Photovoltaics-Thermal Panel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scripps Institution of Oceanography. The Keeling Curve is a Daily Record of Global Atmospheric Carbon Dioxide Concentration Maintained by Scripps Institution of Oceanography at UC San Diego. Available online: https://keelingcurve.ucsd.edu/ (accessed on 18 January 2021).
- Paris Agreement. In Proceedings of the Paris Climate Conference (on 22 April 2016, New York) (COP21). December 2015. Available online: https://ec.europa.eu/clima/policies/international/negotiations/paris_en (accessed on 18 January 2021).
- International Energy Agency (IEA). Energy Consumption by Sector. European Union, 2018. Available online: https://www.iea.org/data-and-statistics/?country=EU28&fuel=Energy%20consumption&indicator=ElecConsBySector (accessed on 18 January 2021).
- Yusuf, A.; Ballikaya, S. Modelling a Segmented Skutterudite-Based Thermoelectric Generator to Achieve Maximum Conversion Efficiency. Appl. Sci. 2020, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Børset, M.T.; Wilhelmsen, Ø.; Kjelstrup, S.; Burheim, O.S. Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy 2017, 118, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Doraghi, Q.; Ahmad, L.; Norman, L.; Axcell, B.; Wrobel, L.; Dai, S. Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 2021, 9, 100063. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Liu, C.; Li, M.; Lv, Y.; Jia, L.; Jiang, S. Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures. Energies 2017, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
- Kütt, L.; Millar, J.; Karttunen, A.; Lehtonen, M.; Karppinen, M. Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves. Renew. Sustain. Energy Rev. 2018, 98, 519–544. [Google Scholar] [CrossRef]
- Mostafavi, S.A.; Mahmoudi, M. Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters. Appl. Therm. Eng. 2018, 132, 624–636. [Google Scholar] [CrossRef]
- Cao, Q.; Luan, W.; Wang, T. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery. Appl. Therm. Eng. 2018, 130, 1472–1479. [Google Scholar] [CrossRef]
- Orr, B.; Akbarzadeh, A.; Lappas, P. An exhaust heat recovery system utilising thermoelectric generators and heat pipes. Appl. Therm. Eng. 2017, 126, 1185–1190. [Google Scholar] [CrossRef]
- Cheng, K.; Qin, J.; Jiang, Y.; Lv, C.; Zhang, S.; Bao, W. Performance assessment of multi-stage thermoelectric generators on hypersonic vehicles at a large temperature difference. Appl. Therm. Eng. 2018, 130, 1598–1609. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Zabrocki, K.; Müller, E. TEG Design for Waste Heat Recovery at an Aviation Jet Engine Nozzle. Appl. Sci. 2018, 8, 2637. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Liao, X.; Yan, D.; Chen, Y. Review of Micro Thermoelectric Generator. J. Microelectromechanical Syst. 2018, 27, 1–18. [Google Scholar] [CrossRef]
- Yang, J.; Caillat, T. Thermoelectric Materials for Space and Automotive Power Generation. MRS Bull. 2006, 31, 224–229. [Google Scholar] [CrossRef]
- Bahk, J.-H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Lee, G.; Choi, G.; Kim, C.S.; Kim, Y.J.; Choi, H.; Kim, S.; Kim, H.S.; Lee, W.B.; Cho, B.J. Material Optimization for a High Power Thermoelectric Generator in Wearable Applications. Appl. Sci. 2017, 7, 1015. [Google Scholar] [CrossRef] [Green Version]
- Nesarajah, M.; Frey, G. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes. Appl. Sci. 2017, 7, 634. [Google Scholar] [CrossRef] [Green Version]
- Alanne, K.; Laukkanen, T.; Saari, K.; Jokisalo, J. Analysis of a wooden pellet-fueled domestic thermoelectric cogeneration system. Appl. Therm. Eng. 2014, 63, 1–10. [Google Scholar] [CrossRef]
- Höftberger, E.; Moser, W.; Aigenbauer, W.; Friedl, G.; Haslinger, W. Grid Autarchy of Automated Pellets Combustion Systems by the Means of Thermoelectric Generators. Thermoelectr Goes Automot II. 2010, pp. 209–233. Available online: https://www.best-research.eu/files/publications/pdf/I1-2481.pdf (accessed on 18 January 2021).
- Moser, W.; Friedl, G.; Aigenbauer, S.; Heckmann, M.; Hofbauer, H. A biomass-fuel based micro-scale CHP system with thermoelectric generators. In Proceedings of the Central European Biomass Conference (16 to 19 January 2008, Austria). 2008. Available online: https://www.best-research.eu/files/publications/pdf/236_CP_I-1-21_Paper_Austrian_Bioenergy_Friedl_Moser.pdf (accessed on 18 January 2021).
- Sornek, K.; Filipowicz, M.; Rzepka, K. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems. Energy Convers. Manag. 2016, 125, 185–193. [Google Scholar] [CrossRef]
- Karthick, K.; Suresh, S.; Hussain, M.M.M.; Ali, H.M.; Kumar, C.S. Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review. Sol. Energy 2019, 188, 111–142. [Google Scholar] [CrossRef]
- Date, A.; Date, A.; Dixon, C.; Akbarzadeh, A. Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy. Sol. Energy 2014, 105, 656–668. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Baseri, M.M.; Ahmadi, P.; Al-Rashed, A.A.; Afrand, M. Proposal of a novel integrated ocean thermal energy conversion system with flat plate solar collectors and thermoelectric generators: Energy, exergy and environmental analyses. J. Clean. Prod. 2020, 256, 120600. [Google Scholar] [CrossRef]
- Palomba, V.; Borri, E.; Charalampidis, A.; Frazzica, A.; Cabeza, L.F.; Karellas, S. Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization. Renew. Energy 2020, 166, 190–209. [Google Scholar] [CrossRef]
- Li, D.; Xuan, Y.; Li, Q.; Hong, H. Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems. Energy 2017, 126, 343–351. [Google Scholar] [CrossRef]
- Dimri, N.; Tiwari, A.; Tiwari, G. Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Convers. Manag. 2017, 146, 68–77. [Google Scholar] [CrossRef]
- Urbiola, E.A.C.; Vorobiev, Y. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator. Int. J. Photoenergy 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Kılkış, B. Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes. Sol. Energy 2020, 200, 89–107. [Google Scholar] [CrossRef]
- Iasiello, M.; Mameli, M.; Filippeschi, S.; Bianco, N. Simulations of paraffine melting inside metal foams at different gravity levels with preliminary experimental validation. J. Phys. Conf. Ser. 2020, 1599, 012008. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Zhang, J. Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam. Int. J. Heat Mass Transf. 2020, 146, 118832. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, W.; Tian, Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol. Energy 2010, 84, 1402–1412. [Google Scholar] [CrossRef] [Green Version]
- Iasiello, M.; Mameli, M.; Filippeschi, S.; Bianco, N. Metal foam/PCM melting evolution analysis: Orientation and morphology effects. Appl. Therm. Eng. 2021, 187, 116572. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, C.; Liu, Q.; Tian, Z.; Fan, X. Thermal performance of copper foam/paraffin composite phase change material. Energy Convers. Manag. 2018, 157, 372–381. [Google Scholar] [CrossRef]
- Kazemian, A.; Hosseinzadeh, M.; Sardarabadi, M.; Passandideh-Fard, M. Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints. Energy 2018, 162, 210–223. [Google Scholar] [CrossRef]
- Zhou, F.; Ji, J.; Yuan, W.; Zhao, X.; Huang, S. Study on the PCM flat-plate solar collector system with antifreeze characteristics. Int. J. Heat Mass Transf. 2019, 129, 357–366. [Google Scholar] [CrossRef]
- Salari, A.; Parcheforosh, A.; Hakkaki-Fard, A.; Amadeh, A. A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module. Renew. Energy 2020, 153, 1261–1271. [Google Scholar] [CrossRef]
- Abora Solar, aH60. Available online: https://abora-solar.com/pdf/AH60SK-ES.pdf (accessed on 18 January 2021).
- Coleman, H.W.; Steele, W.G. Experimentation and Uncertainty Analysis for Engineers, 2nd ed.; John Wiley & Sons Inc.: Toronto, ON, Canada, 1999; ISBN 978-0-470-16888-2. [Google Scholar]
- Uche, J.; Acevedo, L.; Usón, S.; Martínez-Gracia, A.; Bayod-Rújula, A.Á. Analysis of a domestic trigeneration scheme with hybrid renewable energy sources and desalting techniques. J. Clean. Prod. 2019, 212, 1409–1422. [Google Scholar] [CrossRef] [Green Version]
- TEG Solidstate Power Generators, TEG2-07025SHT-S. Available online: https://tecteg.com/wp-content/uploads/2014/09/Spec-TEG2-07025HT-SS-rev1-1.pdf (accessed on 18 January 2021).
- Antonanzas, J.; Del Amo, A.; Martínez-Gracia, A.; Bayod-Rújula, A.; Antonanzas-Torres, F. Towards the optimization of convective losses in photovoltaic–thermal panels. Sol. Energy 2015, 116, 323–336. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Academic Research Documentation Manual, Release 18.2; Help System, Guide; ANSYS, Inc.: Canonsburg, PA, USA; Available online: https://www.ansys.com/ (accessed on 18 January 2021).
- ANSYS. Lecture 7: Mesh Quality & Advanced Topics; ANSYS: Canonsburg, PA, USA, 2015. [Google Scholar]
- Zhang, H.; Li, Y.; Xiao, J.; Jordan, T. Uncertainty analysis of condensation heat transfer benchmark using CFD code GASFLOW-MPI. Nucl. Eng. Des. 2018, 340, 308–317. [Google Scholar] [CrossRef]
Magnitude | Name of Probe | Description | Scale | Readability | B (%) | P (%) | U (%) |
---|---|---|---|---|---|---|---|
Temperature (°C) | Temperature of the flow inlet of the PVT panels | −50–250 | 0.1 | 0.15 | 0.033 | 0.15 | |
Temperature of the flow that leaves the PVT with TEGs | |||||||
Temperature of the flow that leaves the conventional PVT panel | |||||||
Ambient temperature | |||||||
Mass Flow (kg/s) | Mass flow incoming the system. If both panels are working, the flowmeter shows the total mass flow entering the system. | 1–6 | 0.5 | 5 | 8.33 | 9.72 | |
Solar Irradiation (W/m2) | Irr | Incident solar irradiation | 0–2000 | 0.01 | 2.60 | 0.005 | 2.60 |
Pressure | P | Pressure in the hydraulic installation | |||||
Voltage (V) | V1 | Continuous Voltage of PVT with TEGs | 0–5 | 0.00489 | 0.5 | 0.0978 | 0.5095 |
V2 | Continuous Voltage of conventional PVT | ||||||
Current (A) | DC1 | Direct current of PVT with TEGs | 0–20 | 0.01955 | 0.04 | 0.10 | 0.11 |
DC2 | Direct current of conventional PVT |
Material | Density (kg/m3) | Specific Heat (J/kg K) | Conductivity (W/m K) |
---|---|---|---|
Glass | 2383 | 576 | 0.793 |
Argon | 2 | 521 | 0.016 |
EVA | 960 | 2090 | 0.230 |
PV cells | 1190 | 1552 | 148 |
Backsheet | 1200 | 1250 | 0.360 |
Absorber (Aluminum) | 2719 | 871 | 202 |
Insulation | 100 | 670 | 0.033 |
TEG | 93 | 708 | 0.920 |
Water | 998 | 4182 | 0.600 |
PVT Layer | Dimensions (mm) (High × Width × Depth) |
---|---|
Glass cover | 3.2 × 100 × 1650 |
Inert gas | 10 × 100 × 1650 |
Glass | 3.2 × 100 × 1650 |
EVA | 0.5 × 100 × 1650 |
PV cell | 0.3 × 100 × 1650 |
EVA + backsheet | 1.5 × 100 × 1650 |
Thermal absorber | 2 × 100 × 1650 |
Thermal collector | 8 (thickness = 0.6) × 1650 |
Insulant | 10 × 100 × 1650 |
TEG | 3 × 40 × 80 |
1 | 2 | 3 | |
---|---|---|---|
(cm) | 0.23 | 0.31 | 0.50 |
Outlet flow temperature (°C) | 31.810 | 31.818 | 31.856 |
Outflow velocity (m/s) | 0.4298 | 0.4296 | 0.4289 |
Solar Irradiation (W/m2) | Coefficient |
---|---|
≥1.100 | 1 |
1100–900 | 0.88 |
≤900 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintanel, M.T.; Martínez-Gracia, A.; Galindo, M.P.; Bayod-Rújula, Á.A.; Uche, J.; Tejero, J.A.; del Amo, A. Analysis of the Experimental Integration of Thermoelectric Generators in Photovoltaic–Thermal Hybrid Panels. Appl. Sci. 2021, 11, 2915. https://doi.org/10.3390/app11072915
Pintanel MT, Martínez-Gracia A, Galindo MP, Bayod-Rújula ÁA, Uche J, Tejero JA, del Amo A. Analysis of the Experimental Integration of Thermoelectric Generators in Photovoltaic–Thermal Hybrid Panels. Applied Sciences. 2021; 11(7):2915. https://doi.org/10.3390/app11072915
Chicago/Turabian StylePintanel, Mª Teresa, Amaya Martínez-Gracia, Mª Pilar Galindo, Ángel A. Bayod-Rújula, Javier Uche, Juan A. Tejero, and Alejandro del Amo. 2021. "Analysis of the Experimental Integration of Thermoelectric Generators in Photovoltaic–Thermal Hybrid Panels" Applied Sciences 11, no. 7: 2915. https://doi.org/10.3390/app11072915
APA StylePintanel, M. T., Martínez-Gracia, A., Galindo, M. P., Bayod-Rújula, Á. A., Uche, J., Tejero, J. A., & del Amo, A. (2021). Analysis of the Experimental Integration of Thermoelectric Generators in Photovoltaic–Thermal Hybrid Panels. Applied Sciences, 11(7), 2915. https://doi.org/10.3390/app11072915