Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine
Abstract
:1. Introduction
- Distributed Electric Propulsion (DEP), where electric engines are distributed along the wing span, enhancing significantly the wing lift property.
- Boundary Layer Ingestion (BLI), where engines, thanks to their partial integration to the fuselage, diminish the A/C drag.
2. BLI Aircraft Configuration Description
3. Aeroacoustic Model
- engine noise source and in-duct propagation models (Section 3.1),
- acoustic free-field and scattering models (Section 3.2.1 and Section 3.2.2), and
- far-field environmental acoustic model (Section 3.2.3).
3.1. Engine Acoustic Source Model
3.1.1. Aerodynamic Excitation Modelling
3.1.2. Acoustic RSI Noise Source Model
3.1.3. Noise towards the Engines Inlet and Outlet Plane
3.1.4. Computation of Boundary Conditions
3.2. Propagation Model
3.2.1. Free-Field Propagation Model
3.2.2. Scattering Model
3.2.3. Ground Propagation Noise Model
- Ambient conditions.
- Segmentation of the aircraft flight trajectory in terms of global cartesian coordinates of the center, velocity, and flight path angle.
- Acoustic database of hemispheres covering the trajectory conditions in terms of velocity and flight path angle and reporting the Sound Pressure Level (SPL) in narrow- or third-octave bands.
- A carpet of observation points for the acoustic footprint generation.
4. Aeroacoustic Results
4.1. Engine Noise Source Term
4.2. Direct Acoustic Fields
4.3. Scattered Acoustic Fields
4.4. Acoustic Fields on the Ground
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-Dimensional |
3D | Three-Dimensional |
BEM | Boundary Element Method |
BLI | Boundary Layer Ingestion |
BPF | Blade Passing Frequency |
CFD | Computational Fluid Dynamics |
FMM | Fast Multipole Method |
OAPWL | Overall sound power level |
OASPL | Overall Sound Pressure Level |
SWL | Sound Power Level |
SPL | Sound Pressure Level |
RANS | Reynolds-averaged Navier–Stokes |
RSI | Rotor–Stator Interaction |
References
- EU. Flightpath 2050, Europe’s Vision for Aviation; Report of High-Level Group on Aviation Research; Publications Office of the EU: Luxembourg, 2012. [Google Scholar] [CrossRef]
- Guo, Y.; Thomas, R.H.; Clark, I.A.; June, J.C. Far-Term Noise Reduction Roadmap for the Midfuselage Nacelle Subsonic Transport. J. Aircr. 2019, 56, 1893–1906. [Google Scholar] [CrossRef]
- Wiart, L.; Atinault, O.; Boniface, J.C.; Barrier, R. Aeropropulsive performance analysis of the NOVA configurations. In Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, Korea, 26–30 September 2016. [Google Scholar]
- Geiselhart, K.; Daggett, D.; Kawai, R.; Friedman, D. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets with Active Flow Control. NASA Contract Report; NASA/CR-2006-214534. 2004. Available online: https://ntrs.nasa.gov/citations/20070006754 (accessed on 9 November 2020).
- Romani, G.; Ye, Q.; Avallone, F.; Ragni, D.; Casalino, D. Fan Noise Boundary-Layer Ingestion Installation Effects for NOVA Aircraft Configuration. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Burley, C.L.; Thomas, R.H. On Noise Assessment for Blended Wing Body Aircraft. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, M.; Chen, Y.; Sang, W.; Tan, Z.; Li, D.; Zhang, B. Assessment on critical technologies for conceptual design of blended-wing-body civil aircraft. Chin. J. Aeronaut. 2019, 32. [Google Scholar] [CrossRef]
- Welstead, J.; Felder, J.L. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef] [Green Version]
- Moreau, A. A Unified Analytical Approach for the Acoustic Conceptual Design of Fans of Modern Aero-Engines. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2017. [Google Scholar]
- Staggat, M.; Moreau, A.; Guerin, S. Analytical prediction of boundary layer ingestion noise for an integrated turbofan. In Proceedings of the 26th International Congress on Sound and Vibration (ICSV), Montréal, QC, Canada, 7–11 July 2019. [Google Scholar]
- Becker, K.; Heitkamp, K.; Kügeler, E. Recent Progress In A Hybrid-Grid CFD Solver For Turbomachinery Flows. In Proceedings of the 5th European Conference on Computational Fluid Dynamics (ECCOMAS CFD), Lisbon, Portugal, 14–17 June 2010. [Google Scholar]
- Jaron, R. Aeroakustische Auslegung von Triebwerksfans Mittels Multidisziplinärer Optimierungen. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2018. [Google Scholar]
- Moreau, A.; Guerin, S. Similarities of the free-field and in-duct formulations in rotor noise problems. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, OR, USA, 5–8 June 2011. [Google Scholar] [CrossRef]
- Tapken, U. Analyse und Synthese Akustischer Interaktionsmoden von Turbomaschinen. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2015. [Google Scholar]
- Lighthill, M.J.; Newman, M.H.A. On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1952, 211, 564–587. [Google Scholar] [CrossRef]
- Lighthill, M.J. On sound generated aerodynamically II. Turbulence as a source of sound. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1954, 222, 1–32. [Google Scholar] [CrossRef]
- Howe, M.S. Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 1975, 71, 625–673. [Google Scholar] [CrossRef]
- Pierce, A.D. Wave equation for sound in fluids with unsteady inhomogeneous flow. Acoust. Soc. Am. J. 1990, 87, 2292–2299. [Google Scholar] [CrossRef]
- Morris, P.J.; Farassat, F. Acoustic Analogy and Alternative Theories for Jet Noise Prediction. AIAA J. 2002, 40, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Lee, L. A Direct Boundary Integral Formulation For Acoustic Radiation In A Subsonic Uniform Flow. J. Sound Vib. 1994, 175, 51–63. [Google Scholar] [CrossRef]
- Guo, Y. Computation of Sound Propagation by Boundary Element Method. NASA Contract Report; NAS1-00086-A003. 2005. Available online: https://ntrs.nasa.gov/citations/20080030156 (accessed on 14 December 2020).
- Barbarino, M. Aeroacoustic Methods for Low-Noise Technologies Design. Ph.D. Thesis, University of Naples “Federico II”, Naples, Italy, 2013. [Google Scholar] [CrossRef]
- Crighton, D.G.; Dowling, A.P.; Ffowcs-Williams, J.E.; Heckl, M.; Leppington, F.G.; Bartram, J.F. Modern Methods in Analytical Acoustics Lecture Notes. J. Acoust. Soc. Am. 1992, 92, 3023. [Google Scholar] [CrossRef]
- Barbarino, M.; Bianco, D. A BEM–FMM approach applied to the combined convected Helmholtz integral formulation for the solution of aeroacoustics problems. Comput. Methods Appl. Mech. Eng. 2018. [Google Scholar] [CrossRef]
- Wu, T.W.; Seybert, A.F. A weighted residual formulation for the CHIEF method in acoustics. J. Acoust. Soc. Am. 1991, 90, 1608–1614. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Maisog, J.M.; Luta, G. A new point containment test algorithm based on preprocessing and determining triangles. Comput. Aided Des. 2010, 42, 1143–1150. [Google Scholar] [CrossRef]
- Lucas, M.J.; Marcolini, M.A. Rotorcraft Noise Model. NASA Tech Report. 1997. Available online: https://ntrs.nasa.gov/citations/20040110391 (accessed on 14 December 2020).
- Gopalan, G. Quasi-Static Acoustic Mapping of Helicopter Blade-Vortex Interaction Noise. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2004. Available online: https://drum.lib.umd.edu/handle/1903/1757 (accessed on 19 October 2020).
- SAE-International. Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity; SAE ARP866B; Society of Automotive Engineers: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- SAE-International. Procedure for the Calculation of Aircraft Noise in the Vicinity of Airports; SAE AIR1845A; Society of Automotive Engineers: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Mennicken, M.; Hollmann, C.; Staggat, M.; Schnell, R.; Silberhorn, D.; Arzberger, M.J.; Eichner, F.; Winkelmann, P. Preliminary Fan Design for a Full Annulus BLI Propulsor. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2020, Aachen, Germany, 1–3 September 2020. [Google Scholar]
- Silberhorn, D.; Hollmann, C.; Mennicken, M.; Wolters, F.; Eichner, F.; Staggat, M. Overall Design and Assessment of Aircraft Concepts with Boundary Layer Ingesting Engines. In Proceedings of the Deutscher Luft- und Raumfahrtkongress 2019, Darmstadt, Germany, 30 September–2 October 2019. [Google Scholar]
- Silberhorn, D.; Arzberger, M.J.; Wolters, F.; Hollmann, C.; Mennicken, M.; Iwanizki, M. Multidisciplinary Investigation of Partially Turboelectric, Boundary Layer Ingesting Aircraft Concepts. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
Variable | Value |
---|---|
Mach flight | 0.78 |
Mach rotor tip | 0.60 |
Altitude | 10,363.2 m |
Engine Mass Flow | 99.45 kg/s |
Engine Rotational Speed | 2500 RPM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrosino, F.; Barbarino, M.; Staggat, M. Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine. Appl. Sci. 2021, 11, 2936. https://doi.org/10.3390/app11072936
Petrosino F, Barbarino M, Staggat M. Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine. Applied Sciences. 2021; 11(7):2936. https://doi.org/10.3390/app11072936
Chicago/Turabian StylePetrosino, Francesco, Mattia Barbarino, and Martin Staggat. 2021. "Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine" Applied Sciences 11, no. 7: 2936. https://doi.org/10.3390/app11072936
APA StylePetrosino, F., Barbarino, M., & Staggat, M. (2021). Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine. Applied Sciences, 11(7), 2936. https://doi.org/10.3390/app11072936