Willows Used for Phytoremediation Increased Organic Contaminant Concentrations in Soil Surface
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Previous Studies on the Site and Present Experimental Layout
2.2.1. Soil Characterization (2010)
2.2.2. Phase 1 (2010–2013)
2.2.3. Phase 2 (2014–2016)
2.2.4. Phase 3 (2017–2019)
2.3. Soil Sampling
2.4. Data Analyses
3. Results
3.1. Soil Contaminant Concentrations between Treatments
3.2. Soil Contaminant Variations over Time
4. Discussion
4.1. General Pattern
4.2. Convective Transport of Dissolved Chemicals towards the Root Zone
4.3. Cutting Trees Did Not Remove the Roots
4.4. Results Interpretation and Implications for Field Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guidi Nissim, W.; Pitre, F.E.; Teodorescu, T.I.; Labrecque, M. Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 2013, 56, 361–369. [Google Scholar] [CrossRef]
- Ul Hai, I.; Sher, F.; Yaqoob, A.; Liu, H. Assessment of biomass energy potential for SRC willow woodchips in a pilot scale bubbling fluidized bed gasifier. Fuel 2019, 258. [Google Scholar] [CrossRef]
- Guidi Nissim, W.; Voicu, A.; Labrecque, M. Willow short-rotation coppice for treatment of polluted groundwater. Ecol. Eng. 2014, 62, 102–114. [Google Scholar] [CrossRef]
- Desjardins, D.; Brereton, N.J.B.; Marchand, L.; Brisson, J.; Pitre, F.E.; Labrecque, M. Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil. Sci. Total Environ. 2018, 610–611, 1428–1438. [Google Scholar] [CrossRef]
- Grenier, V.; Pitre, F.E.; Guidi Nissim, W.; Labrecque, M. Genotypic differences explain most of the response of willow cultivars to petroleum-contaminated soil. Trees Struct. Funct. 2015, 29, 871–881. [Google Scholar] [CrossRef]
- Guidi, W.; Kadri, H.; Labrecque, M. Establishment techniques to using willow for phytoremediation on a former oil refinery in southern Quebec: Achievements and constraints. Chem. Ecol. 2012, 28, 49–64. [Google Scholar] [CrossRef]
- Pascal-Lorber, S.; Laurent, F. Phytoremediation Techniques for Pesticide Contaminations BT—Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 77–105. ISBN 978-94-007-0186-1. [Google Scholar]
- Hénault-Ethier, L.; Lucotte, M.; Moingt, M.; Paquet, S.; Maccario, S.; Smedbol, É.; Gomes, M.P.; Lepage, L.; Juneau, P.; Labrecque, M. Herbaceous or Salix miyabeana ‘SX64’ narrow buffer strips as a means to minimize glyphosate and aminomethylphosphonic acid leaching from row crop fields. Sci. Total Environ. 2017, 598, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, S.; Demers, E.; Brisson, J.; Comeau, Y. Treatment of a mixed wood preservative leachate by a hybrid constructed wetland and a willow planted filter. Water Sci. Technol. 2017, 76, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Lachapelle-T, X.; Labrecque, M.; Comeau, Y. Treatment and valorization of a primary municipal wastewater by a short rotation willow coppice vegetation filter. Ecol. Eng. 2019, 130, 32–44. [Google Scholar] [CrossRef]
- Košnář, Z.; Mercl, F.; Tlustoš, P. Long-term willows phytoremediation treatment of soil contaminated by fly ash polycyclic aromatic hydrocarbons from straw combustion. Environ. Pollut. 2020, 264. [Google Scholar] [CrossRef] [PubMed]
- Zalesny, R.S.; Berndes, G.; Dimitriou, I.; Fritsche, U.; Miller, C.; Eisenbies, M.; Ghezehei, S.; Hazel, D.; Headlee, W.L.; Mola-Yudego, B.; et al. Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e345. [Google Scholar] [CrossRef]
- Mirck, J.; Volk, T.A. Seasonal sap flow of four salix varieties growing on the Solvay wastebeds in Syracuse, NY, USA. Int. J. Phytoremediation 2010, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Weir, E.; Doty, S. Social acceptability of phytoremediation: The role of risk and values. Int. J. Phytoremediation 2016, 18, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, K.E.; Huang, X.D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- Kardanpour, Z.; Jacobsen, O.S.; Esbensen, K.H. Local versus field scale soil heterogeneity characterization—A challenge for representative sampling in pollution studies. SOIL 2015, 1, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Fortin Faubert, M.; Hijri, M.; Labrecque, M. Short rotation intensive culture of willow, spent mushroom substrate and ramial chipped wood for bioremediation of a contaminated site used for land farming activities of a former petrochemical plant. Plants 2021, 10, 520. [Google Scholar] [CrossRef]
- MELCC Normales Climatiques du Québec 1981–2010. Available online: http://www.environnement.gouv.qc.ca/climat/normales/index.asp (accessed on 29 November 2019).
- CEAEQ MA. 400—BPC 1.0—Détermination des Biphényles Polychlorés: Dosage par Chromatographie en Phase Gazeuse Couplée à un Spectromètre de Masse ou à un Détecteur à Capture D’électrons—Méthode par Congénère et Groupe Homologue, rév. 5. Available online: http://142.213.133.56/methodes/pdf/MA400BPC10.pdf (accessed on 17 January 2014).
- CEAEQ MA. 400—HAP 1.1—Détermination des Hydrocarbures Aromatiques Polycycliques: Dosage par Chromatographie en Phase Gazeuse Couplée à un Spectromètre de Masse. Ministère Développement Durable l’Environnement Lutte Contre Chang. Clim. Québec 2016, 19, 1–21. [Google Scholar]
- CEAEQ MA. 400—HYD. 1.0—Méthode D’analyse—Dosage des Hydrocarbures Pétroliers (C10 à C50) Dans L’eau. Available online: http://collections.banq.qc.ca/ark:/52327/bs35065 (accessed on 17 January 2014).
- CEAEQ MA. 200—Mét. 1.2—Détermination des Métaux: Méthode par Spectrométrie de Masse à Source Ionisante au Plasma D’argon, Rév. 5. Available online: http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA200Met12.pdf (accessed on 21 May 2020).
- CEAEQ MA. 203—Mét. 3.2—Méthode D’analyse Détermination des Métaux Dans L’eau: Méthode par Spectrométrie D’émission au Plasma D’argon, Rév. 2. Available online: http://collections.banq.qc.ca/ark:/52327/bs63408 (accessed on 17 January 2014).
- CEAEQ. DR—12-SCA-01—Lignes Directrices Concernant les Travaux Analytiques en Chimie. Available online: http://www.ceaeq.gouv.qc.ca/accreditation/pala/DR12VAL_directive.pdf (accessed on 23 October 2014).
- Macci, C.; Doni, S.; Peruzzi, E.; Bardella, S.; Filippis, G.; Ceccanti, B.; Masciandaro, G. A real-scale soil phytoremediation. Biodegradation 2013, 24, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Chapman, N.; Miller, A.J.; Lindsey, K.; Whalley, W.R. Roots, water, and nutrient acquisition: Let’s get physical. Trends Plant Sci. 2012, 17, 701–710. [Google Scholar] [CrossRef]
- Bengough, A.G. Water Dynamics of the Root Zone: Rhizosphere Biophysics and Its Control on Soil Hydrology. Vadose Zo. J. 2012, 11, vzj2011.0111. [Google Scholar] [CrossRef] [Green Version]
- Hinsinger, P. How Do Plant Roots Acquire Mineral Nutrients? Chemical Processes Involved in the rhizosphere. In Advances in Agronomy; Academic Press Inc.: Cambridge, MA, USA, 1998; Volume 64, pp. 225–265. [Google Scholar]
- LINEMAN, D.J.; SINCLAIR, A.H.; MITCHELL, M.C. Seasonal changes in Cu, Mn, Zn and Co concentrations in soil in the root-zone of barley (Hordeum vulgare L.). J. Soil Sci. 1989, 40, 103–115. [Google Scholar] [CrossRef]
- Klassen, S.P.; McLean, J.E.; Grossl, P.R.; Sims, R.C. Fate and Behavior of Lead in Soils Planted with Metal-Resistant Species (River Birch and Smallwing Sedge). J. Environ. Qual. 2000, 29, 1826–1834. [Google Scholar] [CrossRef] [Green Version]
- Liste, H.H.; Alexander, M. Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 2000, 40, 11–14. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Rohrbacher, F.; St-Arnaud, M. Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy 2016, 6, 19. [Google Scholar] [CrossRef]
- Jenkins, M.B.; Lion, L.W. Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media. Appl. Environ. Microbiol. 1993, 59, 3306–3313. [Google Scholar] [CrossRef] [Green Version]
- Parrish, Z.D.; Banks, M.K.; Schwab, A.P. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ. Pollut. 2005, 137, 187–197. [Google Scholar] [CrossRef]
- Schwab, A.P.; Al-Assi, A.A.; Banks, M.K. Adsorption of Naphthalene onto Plant Roots. J. Environ. Qual. 1998, 27, 220–224. [Google Scholar] [CrossRef]
- Iqbal, J.; Overton, E.B.; Gisclair, D. Polycyclic Aromatic Hydrocarbons in Louisiana Rivers and Coastal Environments: Source Fingerprinting and Forensic Analysis. Environ. Forensics 2008, 9, 63–74. [Google Scholar] [CrossRef]
- Frédette, C.; Labrecque, M.; Comeau, Y.; Brisson, J. Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix. J. Environ. Manag. 2019, 246, 526–537. [Google Scholar] [CrossRef]
- Ferro, A.M.; Adham, T.; Berra, B.; Tsao, D. Performance of Deep-Rooted Phreatophytic Trees at a Site Containing Total Petroleum Hydrocarbons. Int. J. Phytoremediation 2013, 15, 232–244. [Google Scholar] [CrossRef]
- Ferro, A.; Gefell, M.; Kjelgren, R.; Lipson, D.S.; Zollinger, N.; Jackson, S. Maintaining hydraulic control using deep rooted tree systems. Adv. Biochem. Eng. Biotechnol. 2003, 78, 125–156. [Google Scholar] [CrossRef]
- Frédette, C.; Grebenshchykova, Z.; Comeau, Y.; Brisson, J. Evapotranspiration of a willow cultivar (Salix miyabeana SX67) grown in a full-scale treatment wetland. Ecol. Eng. 2019, 127, 254–262. [Google Scholar] [CrossRef]
- Phillips, C.J.; Marden, M.; Suzanne, L.M. Observations of root growth of young poplar and willow planting types. New Zeal. J. For. Sci. 2014, 44, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tarroux, E.; DesRochers, A.; Krause, C. Effect of natural root grafting on growth response of jack pine (Pinus banksiana) after commercial thinning. For. Ecol. Manag. 2010, 260, 526–535. [Google Scholar] [CrossRef]
- Püttsepp, Ü. Effects of Sustainable Management Practices on Fine-root Systems in Willow. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2004. [Google Scholar]
- Dallimore, W. Natural Grafting of Branches and Roots. Bull. Misc. Inf. (Royal Bot. Gard. Kew) 1917, 1917, 303–306. [Google Scholar] [CrossRef]
- Fontana, M.; Collin, A.; Courchesne, F.; Labrecque, M.; Bélanger, N. Root System Architecture of Salix miyabeana “SX67” and Relationships with Aboveground Biomass Yields. Bioenergy Res. 2020, 13, 183–196. [Google Scholar] [CrossRef]
- Desjardins, D.; Pitre, F.E.; Nissim, W.G.; Labrecque, M. Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. Int. J. Phytoremediation 2016, 18, 598–604. [Google Scholar] [CrossRef]
- Tőzsér, D.; Magura, T.; Simon, E. Heavy metal uptake by plant parts of willow species: A meta-analysis. J. Hazard. Mater. 2017, 336, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Vandecasteele, B.; Meers, E.; Vervaeke, P.; De Vos, B.; Quataert, P.; Tack, F.M.G. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 2005, 58, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Courchesne, F.; Turmel, M.-C.; Cloutier-Hurteau, B.; Constantineau, S.; Munro, L.; Labrecque, M. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada. Int. J. Phytoremediation 2017, 19, 1–36. [Google Scholar] [CrossRef]
- Watson, C. The Phytoremediation Potential of Salix: Studies of the Interaction of Heavy Metals and Willows. Ph.D. Thesis, University of Glasgow, Otland, UK, 2002. [Google Scholar]
- Vervaeke, P.; Tack, F.M.G.; Lust, N.; Verloo, M. Short- and Longer-Term Effects of the Willow Root System on Metal Extractability in Contaminated Dredged Sediment. J. Environ. Qual. 2004, 33, 976. [Google Scholar] [CrossRef] [PubMed]
- Phytoremediation Action Team Phytoremediation of Petroleum Hydrocarbons in Soil. Available online: https://engg.ksu.edu/HSRC/appa.html (accessed on 15 June 2020).
- Mlinarić, A.; Horvat, M.; Smolčić, V.Š. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem. Medica 2017, 27, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.; Verma, S. Is positive publication bias really a bias, or an intentionally created discrimination toward negative results? Saudi J. Anaesth. 2019, 13, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Barac, T.; Weyens, N.; Oeyen, L.; Taghavi, S.; van der Lelie, D.; Dubin, D.; Spliet, M.; Vangronsveld, J. Field Note: Hydraulic Containment of a Btex Plume Using Poplar Trees. Int. J. Phytoremediation 2009, 11, 416–424. [Google Scholar] [CrossRef] [PubMed]
Parameters | Units | Values | Parameters | Units | Values |
---|---|---|---|---|---|
Cation-exchange capacity | meq 100 g−1 | 43.50 | PCBs c | mg kg−1 | 57.58 ± 11.70 |
pH a | - | 7.70 | Cadmium c | mg kg−1 | 1.75 ± 0.15 |
pH buffer | - | >7.50 | Chromium c | mg kg−1 | 659.50 ± 127.22 |
Soil texture | - | Clay | Copper c | mg kg−1 | 1380.00 ± 201.57 |
Clay | % | 46.00 | Nickel c | mg kg−1 | 42.90 ± 2.22 |
Silt | % | 33.90 | Lead c | mg kg−1 | 34.00 ± 8.12 |
Sand | % | 20.10 | Zinc c | mg kg−1 | 386.50 ± 72.13 |
Organic matter | % | 9.60 | Acenaphthene c | mg kg−1 | 0.56 ± 0.18 |
K + Mg + Ca saturation | % | 100.00 | Acenaphtylene c | mg kg−1 | 1.98 ± 0.38 |
P (P/Al) saturation | % | 16.50 | Anthracene c | mg kg−1 | 18.15 ± 4.90 |
Ca saturation | % | 81.60 | Benz[a]anthracene c | mg kg−1 | 0.43 ± 0.09 |
K saturation | % | 3.10 | Benzo[a]pyrene c | mg kg−1 | 0.28 ± 0.07 |
Mg saturation | % | 15.30 | Benzo[ghi]perylene c | mg kg−1 | 0.48 ± 0.12 |
Parameters | Units | Values | Chrysene c | mg kg−1 | 0.40 ± 0.09 |
Al b | mg kg−1 | 48.00 | Fluoranthene c | mg kg−1 | 0.54 ± 0.20 |
B b | mg kg−1 | 1.40 | Fluorene c | mg kg−1 | 0.94 ± 0.21 |
Ca b | mg kg−1 | 7090.00 | Indeno[1,2,3-cd]pyrene c | mg kg−1 | 0.32 ± 0.09 |
Cu b | mg kg−1 | 417.00 | Naphthalene c | mg kg−1 | 0.42 ± 0.13 |
Fe b | mg kg−1 | 178.00 | Phenanthrene c | mg kg−1 | 2.62 ± 0.71 |
K b | mg kg−1 | 525.00 | Pyrene c | mg kg−1 | 1.34 ± 0.41 |
Mg b | mg kg−1 | 800.00 | 1-Methylnaphthalene c | mg kg−1 | 0.42 ± 0.13 |
Mn b | mg kg−1 | 11.00 | 2-Methylnaphthalene c | mg kg−1 | 0.42 ± 0.12 |
P b | mg kg−1 | 80.00 | 1,3-Dimethylnaphthalene c | mg kg−1 | 0.55 ± 0.18 |
Zn b | mg kg−1 | 85.60 | 2,3,5-Trimethylnaphthalene c | mg kg−1 | 0.40 ± 0.13 |
June 2017 (Ti) | June 2019 (Tf) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | Cut vs. Salix | Ti vs. Tf | ||||||||
(mg kg−1) | Cut | Salix | Cut | Salix | at Ti | at Tf | in Cut | in Salix | ||
Cd | 1.86 ± 0.15 | 1.80 ± 0.21 | 1.83 ± 0.61 | 1.05 ± 0.78 | 0.6657 | 0.2582 | 0.9364 | 0.1772 | ||
Cr | 991.00 ± 134.28 | 962.60 ± 110.21 | 1018.87 ± 190.37 | 1074.6 ± 139.24 | 0.7090 | 0.6397 | 0.8163 | 0.2346 | ||
Cu | 2714.00 ± 916.01 | 2552.00 ± 668.93 | 2484.13 ± 704.18 | 2688.60 ± 834.20 | 0.5870 | 0.6761 | 0.5310 | 0.7450 | ||
Ni | 89.80 ± 6.65 | 85.00 ± 9.57 | 95.93 ± 23.16 | 75.20 ± 25.80 | 0.4389 | 0.3920 | 0.6527 | 0.5737 | ||
Zn | 503.00 ± 75.41 | 481.20 ± 37.57 | 526.27 ± 61.21 | 579.60 ± 86.20 | 0.6499 | 0.3411 | 0.6755 | 0.1657 | ||
PCBs | 103.50 ± 31.96 | 97.36 ± 25.93 | 89.84 ± 21.22 | 94.93 ± 19.20 | 0.7930 | 0.7043 | 0.4690 | 0.8770 | ||
C10-C50 | 4000.00 ± 1364.35 | 3640.00 ± 1670.75 B | 6231.33 ± 2422.89 | 8191.33 ± 1818.87 A | 0.7727 | 0.2945 | 0.2285 | 0.0255 * | ||
Acenaphthene | 0.66 ± 0.15 | 0.68 ± 0.33 B | 0.52 ± 0.19 | < | 0.84 ± 0.29 A | 0.8979 | 0.0253 * | 0.2630 | 0.0533 | |
Acenaphthylene | 4.00 ± 1.74 | 3.72 ± 2.18 B | 3.58 ± 1.32 | < | 6.75 ± 2.89 A | 0.8127 | 0.0413 * | 0.1342 | 0.0023 ** | |
Anthracene | 26.34 ± 8.88 b | 20.36 ± 13.17 B | 33.45 ± 9.38 a | 35.55 ± 14.23 A | 0.3097 | 0.8715 | 0.0591 | 0.0907 | ||
Benzo[a]anthracene | 0.56 ± 0.19 | 0.46 ± 0.29 B | 0.49 ± 0.17 | 0.66 ± 0.24 A | 0.5185 | 0.1785 | 0.2361 | 0.0388 * | ||
Benzo[a]pyrene | 0.28 ± 0.13 a | 0.31 ± 0.24 | 0.19 ± 0.10 b | < | 0.39 ± 0.21 | 0.8180 | 0.0995 | 0.0522 | 0.1160 | |
Benzo[b]fluoranthene | 0.30 ± 0.16 | 0.32 ± 0.23 B | 0.25 ± 0.13 | 0.43 ± 0.24 A | 0.8868 | 0.2357 | 0.1300 | 0.0097 ** | ||
Benzo[ghi]perylene | 0.46 ± 0.19 a | 0.38 ± 0.26 B | 0.35 ± 0.08 b | < | 0.61 ± 0.25 A | 0.5965 | 0.0521 | 0.0608 | 0.0120 * | |
Chrysene | 0.36 ± 0.11 a | 0.38 ± 0.26 B | 0.28 ± 0.10 b | < | 0.47 ± 0.21 A | 0.8605 | 0.0499 * | 0.0731 | 0.0198 * | |
Fluoranthene | 0.58 ± 0.15 | 0.68 ± 0.29 | 0.64 ± 0.20 | 0.77 ± 0.25 | 0.3262 | 0.3354 | 0.7010 | 0.5060 | ||
Fluorene | 1.06 ± 0.32 | 0.98 ± 0.52 B | 1.05 ± 0.30 | < | 1.74 ± 0.59 A | 0.7489 | 0.0556 | 0.9099 | <0.0001 **** | |
Indeno[1,2,3-cd]pyrene | 0.32 ± 0.15 a | 0.29 ± 0.20 | 0.19 ± 0.09 b | < | 0.36 ± 0.16 | 0.7598 | 0.0584 | 0.0514 | 0.1026 | |
Naphthalene | 0.34 ± 0.09 | 0.32 ± 0.16 | 0.32 ± 0.07 | 0.41 ± 0.10 | 0.7780 | 0.1550 | 0.6645 | 0.1178 | ||
Phenanthrene | 2.22 ± 0.75 | > | 1.88 ± 0.65 | 2.45 ± 1.02 | 2.91 ± 1.19 | 0.0673 | 0.2881 | 0.6652 | 0.1162 | |
Pyrene | 1.68 ± 0.54 | 1.86 ± 0.92 | 1.93 ± 0.56 | 2.31 ± 0.90 | 0.6911 | 0.5823 | 0.3863 | 0.3577 | ||
1-methylnaphthalene | 0.38 ± 0.08 | 0.36 ± 0.11 B | 0.43 ± 0.12 | < | 0.56 ± 0.20 A | 0.7489 | 0.0435 * | 0.5729 | 0.0318 * | |
2-methylnaphthalene | 0.30 ± 0.07 | 0.30 ± 0.12 B | 0.43 ± 0.10 | < | 0.59 ± 0.15 A | 1.0000 | 0.0244 * | 0.1154 | 0.0009 *** | |
1,3-dimetylnaphthalene | 0.50 ± 0.10 | 0.46 ± 0.15 B | 0.67 ± 0.29 | < | 0.87 ± 0.41 A | 0.5415 | 0.0935 | 0.3856 | 0.0408 * | |
2,3,5-trimetylnaphthalene | 0.22 ± 0.04 | 0.20 ± 0.07 B | 0.31 ± 0.15 | 0.39 ± 0.15 A | 0.3739 | 0.1288 | 0.3101 | 0.0093 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortin Faubert, M.; Desjardins, D.; Hijri, M.; Labrecque, M. Willows Used for Phytoremediation Increased Organic Contaminant Concentrations in Soil Surface. Appl. Sci. 2021, 11, 2979. https://doi.org/10.3390/app11072979
Fortin Faubert M, Desjardins D, Hijri M, Labrecque M. Willows Used for Phytoremediation Increased Organic Contaminant Concentrations in Soil Surface. Applied Sciences. 2021; 11(7):2979. https://doi.org/10.3390/app11072979
Chicago/Turabian StyleFortin Faubert, Maxime, Dominic Desjardins, Mohamed Hijri, and Michel Labrecque. 2021. "Willows Used for Phytoremediation Increased Organic Contaminant Concentrations in Soil Surface" Applied Sciences 11, no. 7: 2979. https://doi.org/10.3390/app11072979
APA StyleFortin Faubert, M., Desjardins, D., Hijri, M., & Labrecque, M. (2021). Willows Used for Phytoremediation Increased Organic Contaminant Concentrations in Soil Surface. Applied Sciences, 11(7), 2979. https://doi.org/10.3390/app11072979