Application of Spatial Time Domain Reflectometry for Investigating Moisture Content Dynamics in Unsaturated Loamy Sand for Gravitational Drainage
Abstract
:1. Introduction
2. Spatial Time Domain Reflectometry
2.1. Basic Principles of Time Domain Reflectometry
2.2. Spatial Time Domain Reflectometry Sensor Development
- The resistance is assumed to be constant at a value of zero for lower frequencies (<104 Hz), because, in practical cases, dielectric losses are much higher than resistance losses, with the exception of long sensors buried into a nearly lossless material such as snow [18];
- The inductance is assumed to be constant (L0) for lower frequencies (<104 Hz), because only the external inductance remains at the highest frequency (106~109 Hz), and a transition frequency around 100 kHz ensures the insignificant influence of the inductance increase at a low-frequency range within the time window of TDR measurement [18];
- The conductance and capacitance depend on the surrounding moist sandy soil and are assumed to be independent of frequency for lower frequencies (<105 Hz) [17];
- The performance of the flat ribbon cable sensor is very sensitive to the installation in accordance with the 3-D electromagnetic modeling analysis [37] because the air-filled gap of 0.25 mm on both sides of the flat ribbon cable causes significant underestimation of moisture content, while a water-filled gap leads to overestimation [17,36].
2.3. Spatial Time Domain Reflectometry Forward Modeling
2.4. Spatial Time Domain Reflectometry Two-Way Inverse Analysis
2.5. Spatial Time Domain Reflectometry One-Way Inverse Analysis
2.6. Spatial Time Domain Reflectometry Post-Analysis
3. Experimental Set-Up for Investigation of Soil Water Retention Behavior
3.1. Soil Sample Specification
3.2. Moisture Profile Logging System Set-Up
3.3. Suction Profile Logging System Set-Up
3.4. Outflow Logging Set-Up, Initial and Boundary Conditions
3.5. Specimen Installation and Operating Procedure
4. Results and Discussion
4.1. Spatial TDR Tracing during Water Table Decreasing
4.2. Spatial TDR Waveform Variation along the Sand Column in the Drainage Test
4.3. Validation of Spatial TDR by Outflow Logging
4.4. Inverse Analysis of Spatial TDR Trace and Dynamic Moisture Profile
4.5. Validation of Pressure Measurement and Dynamic Response of Water Pressure
4.6. Soil Water Retention Curve Measurement Compared to SWRC Using the Standard Method
5. Summary and Reflection
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics For Unsaturated Soils; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Lu, N.; Likos, W.J. Unsaturated Soil Mechanics; John Wiley: New York, NY, USA, 2004. [Google Scholar]
- Khalili, N.; Khabbaz, M. A unique relationship of chi for the determination of the shear strength of unsaturated soils. Geotechnique 1998, 48, 681–687. [Google Scholar] [CrossRef]
- Vanapalli, S.; Fredlund, D. Comparison of different procedures to predict unsaturated soil shear strength. Geotech. Spec. Publ. 2000, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Terzaghi, K.; Terzaghi, K.; Engineer, C.; Czechoslowakia, A.; Terzaghi, K.; Civil, I.; Tchécoslovaquie, A.; Unis, E. Theoretical Soil Mechanics; John Wiley: New York, NY, USA, 1943; Volume 18th. [Google Scholar]
- Bear, J. Dynamics of fluids in porous media. Soil Sci. 1975, 120, 162–163. [Google Scholar] [CrossRef] [Green Version]
- ASTM D2216-10. Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. Am. Soc. Test. Mater. (ASTM) 2010. [Google Scholar] [CrossRef]
- Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P. From local measurements to an upscaled capillary pressure–saturation curve. Transp. Porous Media 2011, 88, 271–291. [Google Scholar] [CrossRef] [Green Version]
- Sakaki, T.; Illangasekare, T.H. Comparison of height-averaged and point-measured capillary pressure–saturation relations for sands using a modified Tempe cell. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Barenblatt, G. Filtration of two nonmixing fluids in a homogeneous porous medium. Fluid Dyn. 1971, 6, 857–864. [Google Scholar] [CrossRef]
- Hassanizadeh, S.M.; Celia, M.A.; Dahle, H.K. Dynamic effect in the capillary pressure–saturation relationship and its impacts on unsaturated flow. Vadose Zone J. 2002, 1, 38–57. [Google Scholar] [CrossRef]
- Das, D.B.; Mirzaei, M. Dynamic effects in capillary pressure relationships for two-phase flow in porous media: Experiments and numerical analyses. AIChE J. 2012, 58, 3891–3903. [Google Scholar] [CrossRef] [Green Version]
- Scheuermann, A.; Galindo-Torres, S.; Pedroso, D.; Williams, D.; Li, L. Dynamics of water movements with reversals in unsaturated soils. In Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT, Sydney, Australia, 2–4 July 2014; pp. 1053–1059. [Google Scholar]
- Sakaki, T.; O’Carroll, D.M.; Illangasekare, T.H. Direct quantification of dynamic effects in capillary pressure for drainage–wetting cycles. Vadose Zone J. 2010, 9, 424–437. [Google Scholar] [CrossRef]
- O’Carroll, D.M.; Phelan, T.J.; Abriola, L.M. Exploring dynamic effects in capillary pressure in multistep outflow experiments. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.; Das, D.B. Experimental investigation of hysteretic dynamic effect in capillary pressure–saturation relationship for two-phase flow in porous media. AIChE J. 2013, 59, 3958–3974. [Google Scholar] [CrossRef] [Green Version]
- Scheuermann, A.; Huebner, C.; Schlaeger, S.; Wagner, N.; Becker, R.; Bieberstein, A. Spatial time domain reflectometry and its application for the measurement of water content distributions along flat ribbon cables in a full-scale levee model. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Huebner, C.; Schlaeger, S.; Becker, R.; Scheuermann, A.; Brandelik, A.; Schaedel, W.; Schuhmann, R. Advanced measurement methods in time domain reflectometry for soil moisture determination. In Electromagnetic Aquametry; Kupfer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 317–347. [Google Scholar]
- Schlaeger, S. A fast TDR-inversion technique for the reconstruction of spatial soil moisture content. Hydrol. Earth Syst. Sci. Discuss. 2005, 9, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Scheuermann, A.; Montenegro, H.; Bieberstein, A. Column test apparatus for the inverse estimation of soil hydraulic parameters under defined stress condition. In Unsaturated Soils: Experimental Studies; Schanz, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 33–44. [Google Scholar]
- Robinson, D.; Jones, S.B.; Wraith, J.; Or, D.; Friedman, S. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Kupfer, K.; Trinks, E.; Wagner, N.; Hübner, C. TDR measurements and simulations in high lossy bentonite materials. Meas. Sci. Technol. 2007, 18, 1118. [Google Scholar] [CrossRef]
- Siggins, A.; Gunning, J.; Josh, M. A hybrid waveguide cell for the dielectric properties of reservoir rocks. Meas. Sci. Technol. 2011, 22, 025702. [Google Scholar] [CrossRef]
- Zhang, J.; Nakhkash, M.; Huang, Y. Electromagnetic imaging of layered building materials. Meas. Sci. Technol. 2001, 12, 1147. [Google Scholar] [CrossRef]
- Roth, C.; Malicki, M.; Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Skierucha, W.; Wilczek, A.; Szypłowska, A.; Sławiński, C.; Lamorski, K. A TDR-based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors 2012, 12, 13545–13566. [Google Scholar] [CrossRef] [PubMed]
- Kaatze, U.; Hübner, C. Electromagnetic techniques for moisture content determination of materials. Meas. Sci. Technol. 2010, 21, 082001. [Google Scholar] [CrossRef]
- Kaatze, U. Reference liquids for the calibration of dielectric sensors and measurement instruments. Meas. Sci. Technol. 2007, 18, 967. [Google Scholar] [CrossRef]
- Huisman, J.; Weerts, A.; Heimovaara, T.; Bouten, W. Comparison of travel time analysis and inverse modeling for soil water content determination with time domain reflectometry. Water Resour. Res. 2002, 38, 13-1–13-8. [Google Scholar] [CrossRef]
- Topp, G.; Davis, J.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Kelleners, T.; Robinson, D.; Shouse, P.; Ayars, J.; Skaggs, T. Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils. Soil Sci. Soc. Am. J. 2005, 69, 67–76. [Google Scholar] [CrossRef]
- Dirksen, C.; Dasberg, S. Improved calibration of time domain reflectometry soil wate-r content measurements. Soil Sci. Soc. Am. J. 1993, 57, 660–667. [Google Scholar] [CrossRef]
- Sihvola, A.H. Electromagnetic Mixing Formulas and Applications; IET: Stevenage, UK, 1999. [Google Scholar]
- Bore, T.; Schwing, M.; Serna, M.L.; Speer, J.; Scheuermann, A.; Wagner, N. A new broadband dielectric model for simultaneous determination of water saturation and porosity. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4702–4713. [Google Scholar] [CrossRef]
- Brovelli, A.; Cassiani, G. Effective permittivity of porous media: A critical analysis of the complex refractive index model. Geophys. Prospect. 2008, 56, 715–727. [Google Scholar] [CrossRef]
- Bore, T.; Wagner, N.; Delepine Lesoille, S.; Taillade, F.; Six, G.; Daout, F.; Placko, D. Error analysis of clay-rock water content estimation with broadband high-frequency electromagnetic sensors—Air gap effect. Sensors 2016, 16, 554. [Google Scholar] [CrossRef] [Green Version]
- Wagner, N.; Trinks, E.; Kupfer, K. Determination of the spatial TDR-sensor characteristics in strong dispersive subsoil using 3D-FEM frequency domain simulations in combination with microwave dielectric spectroscopy. Meas. Sci. Technol. 2007, 18, 1137. [Google Scholar] [CrossRef]
- Leidenberger, P.; Oswald, B.; Roth, K. Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR). Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Comandini, F.V.; Bore, T.; Six, G.; Sagnard, F.; Lesoille, S.D.; Moreau, G.; Placko, D.; Taillade, F. FDR for non destructive evaluation: Inspection of external post-tensioned ducts and measurement of water content in concrete. In Proceedings of the 10th International Conference on Nondestructive Evaluation (NDE) in relation to Structure Safety for Nuclear and Pressurized Components, Cannes, France, 1–3 October 2013; p. 8. [Google Scholar]
- Norgren, M.; He, S. An optimization approach to the frequency-domain inverse problem for a nonuniform LCRG transmission line. IEEE Trans. Microw. Theory Tech. 1996, 44, 1503–1507. [Google Scholar] [CrossRef]
- Lundstedt, J.; Ström, S. Simultaneous reconstruction of two parameters from the transient response of a nonuniform LCRG transmission line. J. Electromagn. Waves Appl. 1996, 10, 19–50. [Google Scholar] [CrossRef]
- Schlaeger, S. Inversion von TDR-Messungen zur Rekonstruktion räumlich verteilter bodenphysikalischer Parameter; Instituts für Bodenmechanik und Felsmechanik der Technischen Hochschule Fridericiana: Karlsruhe, Germany, 2002. [Google Scholar]
- Becker, R.; Schlaeger, S. Spatial time domain reflectometry with rod probes. In Proceedings of the 6th Conference on “Electromagnetic Wave Interaction with Water and Moist Substances”, ISEMA, Weimar, Germany, 29 May–1 June 2005. [Google Scholar]
- Håkansson, G. Reconstruction of Soil Moisture Profile Using Time-Domain Reflectometer Measurements. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 1997. [Google Scholar]
- Wagner, N.; Bore, T.; Robinet, J.C.; Coelho, D.; Taillade, F.; Delepine-Lesoille, S. Dielectric relaxation behavior of Callovo-Oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach. J. Geophys. Res. Solid Earth 2013, 118, 4729–4744. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. Design, calibration and data interpretation for a one-port large coaxial dielectric measurement cell. Meas. Sci. Technol. 2001, 12, 111. [Google Scholar] [CrossRef]
- Hübner, C.; Kupfer, K. Modelling of electromagnetic wave propagation along transmission lines in inhomogeneous media. Meas. Sci. Technol. 2007, 18, 1147. [Google Scholar] [CrossRef]
- ASTM D6913-04. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. Am. Soc. Test. Mater. (ASTM) 2009. [Google Scholar] [CrossRef]
- Giroud, J. Development of criteria for geotextile and granular filters. In Prestressed Geosynthetic Reinforced Soil By Compaction, Proceedings of the 9th International Conference on Geosynthetics, Guaruja, Brazil, 23–28 May 2010; IGS Brazil: Sao Paulo, Brazil, 2010; p. 4564. [Google Scholar]
- Rassam, D.; Williams, D. A dynamic method for determining the soil water characteristic curve for coarse-grained soils. Geotech. Test. J. 2000, 23, 67–71. [Google Scholar]
- Chapuis, R.P.; Masse, I.; Madinier, B.; Aubertin, M. A drainage column test for determining unsaturated properties of coarse materials. ASTM Geotech. Test J. 2007, 30, 83–89. [Google Scholar]
- Lins, Y.; Schanz, T.; Fredlund, D.G. Modified pressure plate apparatus and column testing device for measuring SWCC of sand. ASTM Geotech. Test J. 2009, 32. [Google Scholar] [CrossRef] [Green Version]
- Yan, G. Dynamic Multiphase Flow in Granular Porous Media; Faculty of Engineering, Architecture and Information and Technology (EAIT): Queensland, Australia, 2015. [Google Scholar]
- ThermoFisher Scientific. DT80 Range User’s Manual; Thermo Fisher Scientific Australia Pty Ltd.: Scoresby, Australia, 2013; p. 310. [Google Scholar]
- UMS. User Manual of T5/T5x Pressure Transducer Tensiometer; Meter Group AG: Munchen, Germany, 2009. [Google Scholar]
- Klute, A.; Gardner, W. Tensiometer response time. Soil Sci. 1962, 93, 204–207. [Google Scholar] [CrossRef]
- ASTM D6836-02. Test methods for determination of the soil water characteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge. Am. Soc. Test. Mater. (ASTM) 2003. [Google Scholar] [CrossRef]
- Yang, H.; Rahardjo, H.; Wibawa, B.; Leong, E.-C. A soil column apparatus for laboratory infiltration study. Geotech. Test J. 2004, 27. [Google Scholar] [CrossRef]
- Hassanizadeh, S.M.; Gray, W.G. Toward an improved description of the physics of two-phase flow. Adv. Water Resour. 1993, 16, 53–67. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Kalaydjian, F.-M. Dynamic capillary pressure curve for water/oil displacement in porous media: Theory vs. experiment. In Proceedings of the SPE Annual Technical Conference and Exhibition, Washington, DC, USA, 4–7 October 1992. [Google Scholar]
- Yan, G.; Scheuermann, A.; Schlaeger, S.; Bore, T.; Bhuyan, H. Application of Spatial Time Domain Reflectometry for investigating moisture content dynamics in unsaturated sand. In Proceedings of the 11th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, Florence, Italy, 23–27 May 2016; p. 117. [Google Scholar]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Zhou, A.-N.; Sheng, D.; Carter, J. Modelling the effect of initial density on soil-water characteristic curves. Geotechnique 2012, 62, 669–680. [Google Scholar] [CrossRef] [Green Version]
Specification | Range |
---|---|
Measuring range | +100–85 kPa |
Precision | ±0.5 kPa |
Shaft diameter | 5 mm |
Shaft length | 20 cm |
Output signal | −100 Mv + 85 mV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, G.; Bore, T.; Li, Z.; Schlaeger, S.; Scheuermann, A.; Li, L. Application of Spatial Time Domain Reflectometry for Investigating Moisture Content Dynamics in Unsaturated Loamy Sand for Gravitational Drainage. Appl. Sci. 2021, 11, 2994. https://doi.org/10.3390/app11072994
Yan G, Bore T, Li Z, Schlaeger S, Scheuermann A, Li L. Application of Spatial Time Domain Reflectometry for Investigating Moisture Content Dynamics in Unsaturated Loamy Sand for Gravitational Drainage. Applied Sciences. 2021; 11(7):2994. https://doi.org/10.3390/app11072994
Chicago/Turabian StyleYan, Guanxi, Thierry Bore, Zi Li, Stefan Schlaeger, Alexander Scheuermann, and Ling Li. 2021. "Application of Spatial Time Domain Reflectometry for Investigating Moisture Content Dynamics in Unsaturated Loamy Sand for Gravitational Drainage" Applied Sciences 11, no. 7: 2994. https://doi.org/10.3390/app11072994
APA StyleYan, G., Bore, T., Li, Z., Schlaeger, S., Scheuermann, A., & Li, L. (2021). Application of Spatial Time Domain Reflectometry for Investigating Moisture Content Dynamics in Unsaturated Loamy Sand for Gravitational Drainage. Applied Sciences, 11(7), 2994. https://doi.org/10.3390/app11072994