Role B4C Addition on Microstructure, Mechanical, and Wear Characteristics of Al-20%Mg2Si Hybrid Metal Matrix Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Fabrication
2.2. Cooling Curve Thermal Analysis
2.3. Mechanical Tests
2.4. Sliding Wear Test
2.5. Microstructure Characterization
3. Results and Discussion
3.1. Microstructure Examination
3.2. Quantitative Analysis of Microstructure
3.3. Influence of B4C Addition on Cooling Curves
3.4. Refinement Mechanism of B4C Addition
3.5. Mechanical Properties
3.5.1. Hardness
3.5.2. Tensile Properties
3.5.3. Fracture Surface
3.6. Wear Behavior
4. Conclusions
- With the addition of 5 wt% B4C, the mean size of primary Mg2Si in Al-20%Mg2Si composite decreased from 47 to 33 µm, and its morphology was altered from octahedral to polygonal shape. However, with further addition of B4C to 10 wt%, the morphology of primary Mg2Si remains in polygonal shape with an increase in its size to 38 µm.
- The tensile result showed that the best level of B4C was 5 wt% in which the UTS and El.% of Al-20%Mg2Si composite increased from 177 MPa and 4.6% to 217 MPa and 7% in the Al-20%Mg2Si-5%B4C hybrid composite, respectively. The mechanisms of strengthening of the composites were load transfer effects, dislocation strengthening, and grain refinement. In addition, the Vickers hardness value of Al-20%Mg2Si composite increased from 75 Hv to 100 Hv after the addition of 5 wt% B4C particles to the composite.
- Examination of the fracture surface revealed that the fracture of the Al-20%Mg2Si composite was brittle (including the cleavages). With the addition of 5 wt% B4C particles, the fracture surface owned more dimples, which represents the domination of the ductile fracture.
- The results of the sliding wear test showed that the addition of 5 wt% B4C to the Al-20%Mg2Si composite improved the wear resistance of the alloy by decreasing the wear rate by 46%. The enhancement in wear resistance was due to the self-lubrication function of B4C, uniform distribution of B4C particles and good bonding of B4C with the matrix as well as the small size of primary Mg2Si particles, which in turn decreased the friction coefficient of the composite.
- Examination on the worn surface revealed that the governed wear mechanisms of the Al-20%Mg2Si composite were abrasion and delamination, which changed to mid abrasion in the Al-20%Mg2Si-5%B4C hybrid composite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.; Dixit, A.; Tiwari, S. A Review on Fabrication and Characterization of Aluminium Metal Matrix Composite (AMMC). Int. J. Adv. 2014, 2, 516–521. [Google Scholar]
- Lu, L.; Lai, M.O.; Hoe, M.L. Format on of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg-Al alloy by mechanical alloying. Nanostruct. Mater. 1998, 10, 551–563. [Google Scholar] [CrossRef]
- Bonnet, G.; Rohr, V.; Chen, X.-G.; Bernier, J.-L.; Chiocca, R.; Issard, H. Use of Alcan’s Al-B4C metal matrix composites as neutron absorber material in TN International’s transportation and storage casks, Packaging, Transport. Storage Secur. Radioact. Mater. 2009, 20, 98–102. [Google Scholar] [CrossRef]
- Pozdniakov, A.; Zolotorevskiy, V.; Barkov, R.; Lotfy, A.; Bazlov, A. Microstructure and material characterization of 6063/B4C and 1545K/B4C composites produced by two stir casting techniques for nuclear applications. J. Alloy. Compd. 2016, 664, 317–320. [Google Scholar] [CrossRef]
- McClellan, K.J.; Chu, F.; Roper, J.M.; Shindo, I. Room temperature single crystal elastic constants of boron carbide. J. Mater. Sci. 2001, 36, 3403–3407. [Google Scholar] [CrossRef]
- Dodd, S.P.; Saunders, G.A.; James, B. Temperature and pressure dependences of the elastic properties of ceramic boron carbide (B4C). J. Mater. Sci. 2002, 37, 2731–2736. [Google Scholar] [CrossRef]
- Pozdniakov, A.; Lotfy, A.; Qadir, A.; Shalaby, E.; Khomutov, M.; Churyumov, A.; Zolotorevskiy, V. Development of Al-5Cu/B4C composites with low coefficient of thermal expansion for automotive application. Mater. Sci. Eng. A 2017, 688, 1–8. [Google Scholar] [CrossRef]
- Canakci, A.; Arslan, F.; Varol, T. Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminium alloy composites. Mater. Sci. Technol. 2013, 29, 954–960. [Google Scholar] [CrossRef]
- Baradeswaran, A.; Perumal, A.E. Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites. Compos. Part B 2013, 54, 146–152. [Google Scholar] [CrossRef]
- Lashgari, H.; Zangeneh, S.; Shahmir, H.; Saghafi, M.; Emamy, M. Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B4C cast composites. Mater. Des. 2010, 31, 4414–4422. [Google Scholar] [CrossRef]
- Gudipudi, S.; Nagamuthu, S.; Subbian, K.S.; Prakasa, S.; Chilakalapalli, R. Enhanced mechanical properties of AA6061-B4C composites developed by a novel ultra-sonic assisted stir casting. Eng. Sci. Technol. Int. J. 2020, 23, 1233–1243. [Google Scholar] [CrossRef]
- Patidar, D.; Rana, R. Effect of B4C particle reinforcement on the various properties of aluminium matrix composites: A survey paper. Mater. Today Proc. 2017, 4, 2981–2988. [Google Scholar] [CrossRef]
- Moktar, M.S.; Ghandvar, H.; Abu Bakar, T. Microstructural and tensile properties of Al-20%Mg2Si-xSiCp hybrid metal matrix composite. Encycl. Renew. Sustain. Mater. 2020, 5, 54–63. [Google Scholar] [CrossRef]
- Sukiman, N.A.; Ghandvar, H.; Abu Bakar, T.; Wee, Y.C. Microstructure characterization and tensile properties of Al-15%Mg2Si-xYSZ hybrid composite. Malays. J. Microsc. 2019, 15, 30–37. [Google Scholar]
- Uvaraja, V.C.; Natarajan, N. Tribological characterization of stir-cast hybrid composite Aluminium 6061 reinforced with SiC and B4C particulates. Eur. J. Sci. Res. 2012, 76, 539–552. [Google Scholar]
- Aziz, M.A.; Mahmoud, T.S.; Zaki, Z.I.; Gaafer, A.M. Heat treatment and wear characteristics of Al2O3 and tic particulate reinforced AA6063 alloy hybrid composites. J. Tribol. 2006, 128, 891–904. [Google Scholar] [CrossRef]
- Benal, M.M.; Shivanand, H.K. Effects of reinforcement content and ageing durations on wear characteristics of Al6061 based hybrid composites. Wear 2007, 262, 759–763. [Google Scholar] [CrossRef]
- Umanath, K.; Selvamani, S.T.; Palanikumar, K. Friction and wear behaviour of Al6061 alloy (SiCp+ Al2O3) hybrid composites. Int. J. Eng. Sci. Technol. 2011, 3, 5441–5451. [Google Scholar]
- Altinkok, N.; Coban, A. The tensile behaviour and microstructure of Al2O3/SiCp reinforced aluminium-based mmcs produced by the stir casting method. Int. J. Adv. Sci. Technol. 2012, 2, 78–86. [Google Scholar]
- Uvaraja, V.C.; Natarajan, N.; Rajendran, I.; Sivakumar, K. Tribological behaviour of novel hybrid composite materials using Taguchi technique. J. Tribol. 2013, 135, 021101. [Google Scholar] [CrossRef]
- Sharma, S.S.; Jagannath, K.; Prabhu, P.R.; Gowri, S.; Harisha, S.R.; Kini, U.A. Metallography & bulk hardness of artificially aged Al6061-B4C-sic stir cast hybrid composites. Mater. Sci. Forum. 2017, 880, 140–143. [Google Scholar] [CrossRef]
- Uthayakumar, M.; Aravindan, S.; Rajkumar, K. Wear performance of Al-SiC-B4C hybrid composites under dry sliding conditions. Mater. Design. 2013, 47, 456–464. [Google Scholar] [CrossRef]
- Lin, Q.; Shen, P.; Qiu, F.; Zhang, D.; Jiang, Q. Wetting of polycrystalline B4C by molten Al at 1173–1473K. Scr. Mater. 2009, 60, 960–963. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, F.; Yuan, T.; Zhang, F.; Xiong, X. Wettability of 2519Al on B4C at 1000–1250 °C and mechanical properties of infiltrated B4C-2519Al composites. Ceram. Int. 2014, 40, 2073–2081. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Khayyam, H.; Abdizadeh, H.; Karbalaei, A.M.; Pakseresht, A.H.; Ghasali, E.; Naebe, M. Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling. Mater. Sci. Eng. A 2016, 658, 135–149. [Google Scholar] [CrossRef]
- Harichandran, R.; Selvakumar, N. Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Arch. Civ. Mech. Eng. 2015, 16, 147–158. [Google Scholar] [CrossRef]
- Mehmet, I.; Amin, N.; Onder, A.; Sabri, A. Mechanical characterization of B4C reinforced aluminum matrix composites produced by squeeze casting. Mater. Res. Soc. 2016, 32, 1–7. [Google Scholar] [CrossRef]
- Hashim, J.; Looney, L.; Hashmi, M.S.J. Metal matrix composites: Production by the stir casting method. J. Mater. Process. Technol 1999, 92, 1–7. [Google Scholar] [CrossRef]
- Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1970, 1, 197–201. [Google Scholar] [CrossRef]
- Shabestari, S.G.; Malekan, M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J. Alloys. Compd. 2010, 492, 134–142. [Google Scholar] [CrossRef]
- Ghandvar, H.; Idris, M.H.; Ahmad, N.; Emamy, M. Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15%Mg2Si in-situ composite. Mater. Char. 2018, 135, 57–70. [Google Scholar] [CrossRef]
- Nagarajan, S.; Dutta, B.; Surrapa, M.K. The effect of SiC particles on the size and morphology of eutectic silicon in cast A356/SiCp composites. Compos. Sci. Technol. 1999, 59, 897–902. [Google Scholar] [CrossRef]
- Li, Y.Z.; Wang, Q.Z.; Wang, W.G.; Xiao, B.L.; Ma, Z.Y. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites. Mater. Chem. Phys. 2015, 1–11. [Google Scholar] [CrossRef]
- Azarbarmas, M.; Emamy, M.; Karamouz, M.; Alipour, M.; Rassizadehghani, J. The effects of boron additions on the microstructure, hardness and tensile properties of in situ Al-15%Mg2Si composite. Mater. Design. 2011, 32, 5049–5054. [Google Scholar] [CrossRef]
- Viala, J.C.; Bouix, J.; Gonzalez, G.; Esnouf, C. Chemical reactivity of aluminium with boron carbide. J. Mater. Sci. 1997, 32, 4559–4573. [Google Scholar] [CrossRef]
- Lashgari, H.R.; Emamy, M.; Razaghian, A.; Najimi, A.A. The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite. Mater. Sci. Eng. A 2009, 517, 170–179. [Google Scholar] [CrossRef]
- Ghandvar, H.; Farahany, S.; Idris, J. Wettability Enhancement of SiCp in Cast A356/SiCp Composite Using Semisolid Process. Mater. Manuf. Process. 2015, 30, 1442–1449. [Google Scholar] [CrossRef]
- Song, M. Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans. Nonferrous Metals Soc. China 2009, 19, 1400–1404. [Google Scholar] [CrossRef]
- Qi, G.; Shusen, W.; Shulin, L.; Xuecheng, D.; Zhiyuan, Z. Preparation of in- situ TiB2 and Mg2Si hybrid particulates reinforced Al-matrix composites. J. Alloy. Compd. 2015, 651, 521–527. [Google Scholar] [CrossRef]
- Moses, J.; Dinaharan, I.; Sekhar, S. Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting. Trans. Nonferrous Met. Soc. China 2015, 26, 1498–1511. [Google Scholar] [CrossRef]
- Babout, L.; Maire, E.; Buffière, J.Y.; Fougères, R. Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Mater. 2001, 49, 2055–2063. [Google Scholar] [CrossRef]
- Mohammadi, H.; Emamy, M.; Hamnabard, Z. The statistical analysis of tensile and compression properties of the as-cast AZ91-X%B4C composites. Inter. Metal. Cast. 2020, 14, 505–517. [Google Scholar] [CrossRef]
- Lakshmanan, P.A. Fabrication and Tribological Behaviour of (Mg-TiO2) Composites. Trans. Famena 2017, 41, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Archard, J. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Thakur, S.K.; Dhindaw, B.K. The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness. Wear 2001, 247, 191. [Google Scholar] [CrossRef]
- Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M. Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites. J. Mater. Eng. Perform. 2006, 15, 668. [Google Scholar] [CrossRef]
- Devaraju, A.; Pazhanivel, K. Evaluation of Microstructure, Mechanical and Wear Properties of Aluminium Reinforced with Boron Carbide Nano Composite. Indian. J. Sci. Technol. 2016, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Wu, X.; Ge, S.; Ye, J.; Zhu, H.; Hagiwara, M.; Schoenung, J. Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites. Wear 2008, 264, 555–561. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghandvar, H.; Jabbar, M.A.; Koloor, S.S.R.; Petrů, M.; Bahador, A.; Bakar, T.A.A.; Kondoh, K. Role B4C Addition on Microstructure, Mechanical, and Wear Characteristics of Al-20%Mg2Si Hybrid Metal Matrix Composite. Appl. Sci. 2021, 11, 3047. https://doi.org/10.3390/app11073047
Ghandvar H, Jabbar MA, Koloor SSR, Petrů M, Bahador A, Bakar TAA, Kondoh K. Role B4C Addition on Microstructure, Mechanical, and Wear Characteristics of Al-20%Mg2Si Hybrid Metal Matrix Composite. Applied Sciences. 2021; 11(7):3047. https://doi.org/10.3390/app11073047
Chicago/Turabian StyleGhandvar, Hamidreza, Mostafa Abbas Jabbar, Seyed Saeid Rahimian Koloor, Michal Petrů, Abdollah Bahador, Tuty Asma Abu Bakar, and Katsuyoshi Kondoh. 2021. "Role B4C Addition on Microstructure, Mechanical, and Wear Characteristics of Al-20%Mg2Si Hybrid Metal Matrix Composite" Applied Sciences 11, no. 7: 3047. https://doi.org/10.3390/app11073047
APA StyleGhandvar, H., Jabbar, M. A., Koloor, S. S. R., Petrů, M., Bahador, A., Bakar, T. A. A., & Kondoh, K. (2021). Role B4C Addition on Microstructure, Mechanical, and Wear Characteristics of Al-20%Mg2Si Hybrid Metal Matrix Composite. Applied Sciences, 11(7), 3047. https://doi.org/10.3390/app11073047