Shear Response of Members without Shear Reinforcement—Experiments and Analysis Using Shear Crack Propagation Theory (SCPT)
Abstract
:1. Introduction and Research Significance
2. Shear Crack Propagation Theory (SCPT)
3. Experimental Investigations
4. Results of Experimental Investigations
4.1. Crack Pattern and Failure Crack at Ultimate Load
4.2. Load Deflection Behavior
4.3. Shear Crack Kinematics and Concrete Strains in Compression Zone
5. Discussion and Comparison to SCPT Results
5.1. Comparison of the Maximum Load
5.2. Shear Crack Geometry
5.3. Shear Crack Kinematics and Concrete Strains in Compression Zone
6. Analysis of Shear Transfer Actions
6.1. General
6.2. Uncracked Concrete Zone
6.3. Fracture Process Zone
6.4. Aggregate Interlock
6.5. Dowel Action
6.6. Conclusion of the SCPT Analysis
7. Summary, Conclusions and Outlook
- The relative shear contribution of the uncracked concrete zone is up to 100% at low load levels and reduces to ~30% close to failure. The absolute capacity of the uncracked zone increases with the flattening crack propagation angle until it slightly reduces at higher load levels due to increased vertical stresses at the crack tip resulting from a cantilever action of the concrete teeth.
- After a rather steep increase of the relative shear contribution of the fracture process zone for small shear crack rotations, this relative contribution remains constant at 10–20% of the total shear capacity during the further loading process. The shear contribution of the FPZ becomes more effective with the flattening crack propagation angle and does not vanish or significantly reduce at higher load levels.
- The aggregate interlock is activated rather late during the loading process, since sliding of the crack lips is required, which is observed after the vertical crack path turns into a more horizontal crack path. Nevertheless, the relative shear force contribution resulting from the aggregate interlock is ~40% at failure and, thus, is the most effective shear-carrying mechanism at that point.
- The dowel action effects are immediately activated, resulting from a vertical component of the crack opening. The shear force taken by the dowel action increases until a maximum is reached, depending on the assumed constitutive behavior. In the case of B1-1, the relative shear contribution of the dowel action amounts to a maximum of ~30% and slightly reduces to ~20% at failure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adam, V.; Hegger, J. Investigations on influence factors on shear in structural components without shear reinforcement. In Proceedings of the 12th fib International PhD Symposium in Civil Engineering, Prague, Czech Republic, 29–31 August 2018; pp. 275–284. [Google Scholar]
- Adam, V.; Herbrand, M.; Claßen, M. Experimentelle Untersuchungen zum Einfluss der Bauteilbreite und der Schubschlankheit auf die Querkrafttragfähigkeit von Stahlbetonplatten ohne Querkraftbewehrung. Bauingenieur 2018, 93, 37–45. [Google Scholar] [CrossRef]
- Zsutty, T.C. Beam Shear Strength Prediction by Analysis of Existing Data. ACI J. 1968, 65, 943–951. [Google Scholar]
- Leonhardt, F.; Walther, R.; Dilger, W. Schubversuche an Durchlaufträgern (Zweifeldrige Stahlbetonbalken mit und ohne Schubbewehrung): DAfStb-Heft 163; Ernst & Sohn: Berlin, Germany, 1964. [Google Scholar]
- Hedman, O.; Losberg, A. Design of Concrete Structures with Reagrd to Shear Forces. In Shear and Torsion: Explanatory and Viewpoint Papers on Model Code Chapters 11 and 12 Prepared by Members of CEB Commission V; Regan, P.E., Taylor, H.P.J., Eds.; International Federation for Structural Concrete: Lausanne, Switzerland, 1978; pp. 184–209. [Google Scholar]
- Bazant, Z.P.; Kim, J.-K. Size Effect in Shear Failure of Longitudinally Reinforced Beams. ACI J. 1984, 81, 456–468. [Google Scholar]
- Ghannoum, W.M. Size Effect on Shear Strength of Reinforced Concrete Beams. Master’s Thesis, Mc Gill University, Montréal, QC, Canada, November 1998. [Google Scholar]
- Bentz, E.C. Empirical Modeling of Reinforced Concrete Shear Strength Size Effect for Members without Stirrups. ACI Struct. J. 2005, 102, 232–241. [Google Scholar]
- Bazant, Z.P.; Planas, J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials; CRC Press: Boca Raton, FL, USA, 1998; ISBN 0-849-8284-X. [Google Scholar]
- Muttoni, A.; Fernández Ruiz, M. Shear Strength of Members without Transverse Reinforcement as Function of Critical Shear Crack Width. ACI Struct. J. 2008, 105, 163–172. [Google Scholar]
- Vecchio, F.J.; Collins, M.P. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Struct. J. 1986, 83, 219–231. [Google Scholar] [CrossRef]
- Tung, N.D.; Tue, N.V. A new approach to shear design of slender reinforced concrete members without transverse reinforcement. Eng. Struct. 2016, 107, 180–194. [Google Scholar] [CrossRef]
- Huber, P.; Huber, T.; Kollegger, J. Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Eng. Struct. 2016, 113, 41–58. [Google Scholar] [CrossRef]
- Cavagnis, F. Shear in Reinforced Concrete without Transverse Reinforcement: From Refined Experimental Measurements to Mechanical Models. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2017. [Google Scholar]
- Cladera, A.; Marí, A.; Bairán, J.-M.; Oller, E.; Ribas, C. One-Way Shear Design Method Based on a Multi-Action Model: A compromise between simplicity and accuracy. Concr. Int. 2017, 39, 40–46. [Google Scholar]
- Zink, M. Zum Biegeschubversagen Schlanker Bauteile aus Hochleistungsbeton Mit und Ohne Vorspannung. Ph.D. Thesis, Universität Leipzig, Leipzig, Germany, 1999. [Google Scholar]
- Zararis, P.D.; Papadakis, G.C. Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement. J. Struct. Eng. 2001, 127, 733–742. [Google Scholar] [CrossRef]
- Bentz, E.C.; Vecchio, F.J.; Collins, M.P. Simplified Modified Compression Field Theory for calculating shear strength of reinforced concrete members. ACI Struct. J. 2006, 103, 614–624. [Google Scholar] [CrossRef]
- Yang, Y. Shear Behaviour of Reinforced Concrete Members without Shear Reinforcement: A New Look at an Old Problem. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2014. [Google Scholar]
- Yang, Y.; Walraven, J.; Uijl, J.d. Shear Behavior of Reinforced Concrete Beams without Transverse Reinforcement Based on Critical Shear Displacement. J. Struct. Eng. 2017, 143, 1–13. [Google Scholar] [CrossRef]
- Fisker, J.; Hagsten, L.G. Mechanical model for the shear capacity of R/C beams without stirrups: A proposal based on limit analysis. Eng. Struct. 2016, 115, 220–231. [Google Scholar] [CrossRef]
- Tue, N.V.; Theiler, W.; Tung, N.D. Schubverhalten von Biegebauteilen ohne Querkraftbewehrung. Beton Stahlbetonbau 2014, 109, 666–677. [Google Scholar] [CrossRef]
- Muttoni, A.; Fernández Ruiz, M. From experimental evidence to mechanical modeling and design expressions: The Critical Shear Crack Theory for shear design. Struct. Concr. 2019, 111, 1147. [Google Scholar] [CrossRef]
- Reineck, K.-H. Ultimate Shear Force of Structural Concrete Members without Transverse Reinforcement Derived from a Mechanical Model. ACI Struct. J. 1991, 88, 592–602. [Google Scholar]
- Classen, M. Shear Crack Propagation Theory (SCPT)–The mechanical solution to the riddle of shear in RC members without shear reinforcement. Eng. Struct. 2020, 210. [Google Scholar] [CrossRef]
- Sucharda, O. Identification of Fracture Mechanic Properties of Concrete and Analysis of Shear Capacity of Reinforced Concrete Beams without Transverse Reinforcement. Materials 2020, 13, 2788. [Google Scholar] [CrossRef]
- Malm, R. Predicting Shear Type Crack Initiation and Growth in Concrete with Non-linear Finite Element Method. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Schweden, 2009. [Google Scholar]
- Herbrand, M.; Kueres, D.; Stark, A.; Claßen, M. Numerische Simulation von balken- und plattenförmigen Bauteilen aus Stahlbeton und UHPC mit einem plastischen Schädigungsmodell. Bauingenieur 2016, 91, 46–56. [Google Scholar]
- Faron, A.; Rombach, G.A. Simulation of crack growth in reinforced concrete beams using extended finite element method. Eng. Fail. Anal. 2020, 116, 104698. [Google Scholar] [CrossRef]
- Huang, Z.; Lü, Z.; Song, S.; Tu, Y.; Blanksvärd, T.; Sas, G.; Elfgren, L. Finite element analysis of shear deformation in reinforced concrete shear-critical beams. Struct. Infrastruct. Eng. 2018, 14, 791–806. [Google Scholar] [CrossRef] [Green Version]
- Vidaković, A.; Halvonik, J. Assessment of shear capacity of concrete bridge deck slabs using theoretical formulations and FEM analysis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 566, 12036. [Google Scholar] [CrossRef]
- Bui, T.-T.; Limam, A.; Nana, W.-S.-A.; Ferrier, E.; Bost, M.; Bui, Q.-B. Evaluation of one-way shear behaviour of reinforced concrete slabs: Experimental and numerical analysis. Eur. J. Environ. Civ. Eng. 2020, 24, 190–216. [Google Scholar] [CrossRef]
- Cervenka, V.; Cervenka, J.; Pukl, R.; Sajdlova, T. Prediction of Shear Failure of Large Beams Based on Fracture Mechanics. In Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-9, Berkeley, CA, USA, 29 May–1 June 2016. [Google Scholar]
- Scotta, R.; Vitaliani, R.; Saetta, A.; Onate, E.; Hanganu, A. A scalar damage model with a shear retention factor for the analysis of reinforced concrete structures: Theory and validation. Comput. Strucutres 2001, 79, 737–755. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Prat, P.C. Microplane Model for Brittle-Plastic Material: I. Theory. J. Eng. Mech. 1988, 114, 1672–1688. [Google Scholar] [CrossRef]
- Ungermann, J.; Adam, V.; Classen, M. Fictitious Rough Crack Model (FRCM): A Smeared Crack Modelling Approach to Account for Aggregate Interlock and Mixed Mode Fracture of Plain Concrete. Materials 2020, 13, 2774. [Google Scholar] [CrossRef]
- Hillerborg, A.; Modéer, M.; Petersson, P.-E. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements. Cem. Concr. Res. 1976, 6, 773–781. [Google Scholar] [CrossRef]
- Kupfer, H.; Gerstle, H. Behavior of Concrete under Biaxial Stresses. J. Eng. Mech. Div. 1973, 66, 853–866. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e.V. Prüfung von Festbeton-Teil 3: Druckfestigkeit von Probekörpern: Deutsche Fassung EN 12390-3:2019; Beuth: Berlin, Germany, 2019. [Google Scholar]
- Deutsches Institut für Normung e.V. Prüfung von Festbeton-Teil 13: Bestimmung des Elastizitätsmoduls unter Druckbelastung (Sekantenmodul): Deutsche Fassung EN 12390-13:2019; Beuth: Berlin, Germany, 2019. [Google Scholar]
- European Standard. Eurocode 2: Design of Concrete Structures–Part 1-1: General Rules and Rules for Buildings. Incl. Corrigendum 1: EN 1992-1-1:2004/AC:2008, Incl. Corrigendum 2: EN 1992-1-1:2004/AC:2010, incl. Amendment 1: EN 1992-1-1:2004/A1:2014; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- Deutscher Ausschuss für Stahlbeton. Erläuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA (Eurocode 2): DAfStb-Heft 600; Beuth: Berlin, Germany, 2012. [Google Scholar]
- Walraven, J.C.; Reinhardt, H.W. Theory and Experiments on the Mechanical Behaviour of Cracks in Plain and Reinforced Concrete Subjected to Shear Loading. HERON 1981, 26, 1–68. [Google Scholar]
- Fernández Ruiz, M.; Muttoni, A.; Sagaseta, J. Shear strength of concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Eng. Struct. 2015, 99, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Cavagnis, F.; Fernández Ruiz, M.; Muttoni, A. A mechanical model for failures in shear of members without transverse reinforcement based on development of a critical shear crack. Eng. Struct. 2018, 157, 300–315. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.; El-Salakawy, E.; Benmokrane, B. Shear Strength of FRP-Reinforced Concrete Beams without Transverse Reinforcement. ACI Struct. J. 2006, 103, 235–243. [Google Scholar] [CrossRef]
- Desai, S.B. Influence of Constituents of Concrete on Its Tensile Strength and Shear Strength. ACI Struct. J. 2004, 101, 29–38. [Google Scholar]
- Choi, K.-k.; Park, H.-g.; Wight, J.K. Unified Shear Strength Model for Reinforced Concrete Beams-Part I: Development. ACI Struct. J. 2007, 104, 142–152. [Google Scholar]
- Tureyen, A.K.; Wolf, T.S.; Frosch, R.J. Shear Strength of Reinforced Concrete T-Beams without Transverse Reinforcement. ACI Struct. J. 2006, 103, 656–663. [Google Scholar] [CrossRef]
Test No. | Age (d) | fcm,cube (MPa) | fcm,cyl (MPa) | fct,sp (MPa) | Ecm (MPa) |
---|---|---|---|---|---|
B1-1 & B1-2 | 41 | 44.5 | 36.9 | 2.93 | 26,800 |
Test No. | Fu (kN) | Vu,a (kN) |
---|---|---|
B1-1 | 195.7 | 104.8 |
B1-2 | 196.1 | 105.1 |
Test No. | Fu,exp (kN) | Vu,a,exp (kN) | Vu,a,SCPT (kN) | Vu,a,EC2 (kN) |
---|---|---|---|---|
B1-1 | 195.7 | 104.8 (=100%) | 111.4 (=106%) | 113.3 (=108%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, M.; Schmidt, P.; Wanka, S.; Classen, M. Shear Response of Members without Shear Reinforcement—Experiments and Analysis Using Shear Crack Propagation Theory (SCPT). Appl. Sci. 2021, 11, 3078. https://doi.org/10.3390/app11073078
Schmidt M, Schmidt P, Wanka S, Classen M. Shear Response of Members without Shear Reinforcement—Experiments and Analysis Using Shear Crack Propagation Theory (SCPT). Applied Sciences. 2021; 11(7):3078. https://doi.org/10.3390/app11073078
Chicago/Turabian StyleSchmidt, Maximilian, Philipp Schmidt, Sebastian Wanka, and Martin Classen. 2021. "Shear Response of Members without Shear Reinforcement—Experiments and Analysis Using Shear Crack Propagation Theory (SCPT)" Applied Sciences 11, no. 7: 3078. https://doi.org/10.3390/app11073078
APA StyleSchmidt, M., Schmidt, P., Wanka, S., & Classen, M. (2021). Shear Response of Members without Shear Reinforcement—Experiments and Analysis Using Shear Crack Propagation Theory (SCPT). Applied Sciences, 11(7), 3078. https://doi.org/10.3390/app11073078