Relationship between Ice Hockey-Specific Complex Test (IHCT) and Match Performance
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design and Methodology
2.3. Parameterization of Match Performance
2.4. Statistics
3. Results
3.1. Normal Distribution
3.2. Demographic and Anthropometric Data
3.3. Dependences between Anthropometric and IHCT Data
3.4. Test and Match Performance Data
3.5. Dependences between Single Match Performance Data and IHCT Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.R.; Pivarnik, J.M.; Carrier, D.P.; Womack, C.J. Relationship Between Physiological Profiles and On-Ice Performance of a National Collegiate Athletic Association Division I Hockey Team. J. Strength Cond. Res. 2006, 20, 43. [Google Scholar] [CrossRef]
- Bracko, M.R. On-Ice Performance Characteristics of Elite and Non-elite Women’s Ice Hockey Players. J. Strength Cond. Res. 2001, 15, 42–47. [Google Scholar] [CrossRef]
- Durocher, J.J.; Guisfredi, A.J.; Leetun, D.T.; Carter, J.R. Comparison of on-ice and off-ice graded exercise testing in collegiate hockey players. Appl. Physiol. Nutr. Metab. 2010, 35, 35–39. [Google Scholar] [CrossRef]
- Vescovi, J.D.; Murray, T.M.; Fiala, K.A.; VanHeest, J.L. Off-ice performance and draft status of elite ice hockey players. Int. J. Sports Physiol. Perform. 2006, 1, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Schwesig, R.; Hermassi, S.; Edelmann, S.; Thorhauer, U.; Schulze, S.; Fieseler, G.; Delank, K.S.; Shephard, R.J.; Chelly, M.S. Relationship between ice hockey-specific complex test and maximal strength, aerobic capacity and postural regulation in professional players. J. Sports Med. Phys. Fitness 2017, 57, 1415–1423. [Google Scholar]
- Burr, J.F.; Jamnik, V.K.; Dogra, S.; Gledhill, N. Evaluation of jump protocols to assess leg power and predict hockey playing potential. J. Strength Cond. Res. 2007, 21. [Google Scholar] [CrossRef]
- Burr, J.F.; Jamnik, R.K.; Baker, J.; Macpherson, A.; Gledhill, N.; Mcguire, E.J. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J. Strength Cond. Res. 2008, 22. [Google Scholar] [CrossRef]
- Roczniok, R.; Stanula, A.; Gabryś, T.; Szmatlan-Gabryś, U.; Gołaś, A.; Stastny, P. Physical fitness and performance of polish ice-hockey players competing at different sports levels. J. Hum. Kinet. 2016, 51, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, B.J.; Fitzgerald, J.S.; Dietz, C.C.; Ziegler, K.S.; Baker, S.E.; Snyder, E.M. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J. Strength Cond. Res. 2016, 30, 2375–2381. [Google Scholar] [CrossRef]
- Lignell, E.; Fransson, D.; Krustrup, P.; Mohr, M. Analysis of high-intensity skating in top-class ice hockey match-play in relation to training status and muscle damage. J. Strength Cond. Res. 2018, 32, 1303–1310. [Google Scholar] [CrossRef]
- Hajek, F.; Keller, M.; Taube, W.; von Duvillard, S.P.; Bell, J.W.; Wagner, H. Testing-Specific Skating Performance in Ice Hockey. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Boland, M.; Delude, K.; Miele, E.M. Relationship between physiological off-ice testing, on-ice skating, and game performance in division I female ice hockey players. J. Strength Cond. Res. 2019, 33, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Farlinger, C.M.; Kruisselbrink, L.D.; Fowles, J.R. Relationships to skating performance in competitive hockey players. J. Strength Cond. Res. 2007, 21, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Ransdell, L.B.; Murray, T.M.; Gao, Y. Off-ice fitness of elite female ice hockey players by team success, age, and player position. J. Strength Cond. Res. 2013, 27. [Google Scholar] [CrossRef]
- Schulze, S.; Laudner, K.G.; Delank, K.S.; Brill, R.; Schwesig, R. Reference data by player position for an ice hockey-specific complex test. Appl. Sci. 2021, 11, 280. [Google Scholar] [CrossRef]
- Schwesig, R.; Koke, A.; Fischer, D.; Fieseler, G.; Jungermann, P.; Delank, K.S.; Hermassi, S. Validity and Reliability of the New Handball-Specific Complex Test. J. Strength Cond. Res. 2016, 30, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Hermassi, S.; Chelly, M.S.; Wollny, R.; Hoffmeyer, B.; Fieseler, G.; Schulze, S.; Irlenbusch, L.; Delank, K.S.; Shephard, R.J.; Bartels, T.; et al. Relationships between the handball-specifc complex test, non-specifc feld tests and the match performance score in elite professional handball players. J. Sports Med. Phys. Fitness 2018, 58. [Google Scholar] [CrossRef]
- Schwesig, R.; Hermassi, S.; Lauenroth, A.; Laudner, K.; Koke, A.; Bartels, T.; Delank, S.; Schulze, S. Validity of a basketball-specific complex test in female professional players. Sport. Sport. 2018, 32, 125–133. [Google Scholar] [CrossRef]
- Schwesig, R.; Schulze, S.; Reinhardt, L.; Laudner, K.G.; Delank, K.-S.; Hermassi, S. Differences in Player Position Running Velocity at Lactate Thresholds Among Male Professional German Soccer Players. Front. Physiol. 2019, 10, 886. [Google Scholar] [CrossRef] [Green Version]
- Millum, J.; Wendler, D.; Emanuel, E.J. The 50th Anniversary of the Declaration of Helsinki. JAMA 2013, 310, 2143. [Google Scholar] [CrossRef] [Green Version]
- Schwesig, R.; Lauenroth, A.; Schulze, S.; Laudner, K.; Bartels, T.; Delank, K.; Reinhardt, L.; Kurz, E.; Hermassi, S. Reliability of an ice hockey-specific complex test. Sport. Sport. 2018, 32, 196–203. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Science, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988; ISBN 0805802835. [Google Scholar]
- Green, S.B. How Many Subjects Does It Take To Do A Regression Analysis? Multivar. Behav. Res. 1991, 26, 499–510. [Google Scholar] [CrossRef]
- Babyak, M.A. What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 2004, 66, 411–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, D.J.; Maiorana, A.; O’Driscoll, G.; Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004, 561, 1–25. [Google Scholar] [CrossRef]
- Bond, C.W.; Bennett, T.W.; Noonan, B.C. Evaluation of skating top speed, acceleration, and multiple repeated sprint speed ice hockey performance tests. J. Strength Cond. Res. 2018, 32, 2273–2283. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.A.; Smith, A.M.; Holmes, L.C.; Klebe, C.R.; Lee, J.B.; Lundquist, K.M.; Eischen, J.J.; Hollman, J.H. Relationship of Off-Ice and On-Ice Performance Measures in High School Male Hockey Players. J. Strength Cond. Res. 2012, 26, 1423–1430. [Google Scholar] [CrossRef]
- Bracko, M.R.; Fellingham, G.W.; Hall, L.T.; Fisher, A.G.; Cryer, W. Performance skating characteristics of professional ice hockey forwards. Sport. Med. Train. Rehabil. 1998, 8, 251–263. [Google Scholar] [CrossRef]
- Haugen, T.; Hopkins, W.; Breitschädel, F.; Paulsen, G.; Solberg, P. Fitness tests and match performance in a male ice-hockey national league. Int. J. Sports Physiol. Perform. 2020. [Google Scholar] [CrossRef] [PubMed]
- Noonan, B.C. Intragame Blood-Lactate Values During Ice Hockey and Their Relationships to Commonly Used Hockey Testing Protocols. J. Strength Cond. Res. 2010, 24, 2290–2295. [Google Scholar] [CrossRef]
- Nigg, C.R.; Gessner, A.; Nigg, C.; Giurgiu, M.; Neumann, R. Demographic, physiological, psychological, and on-ice performance indicators predict plus/minus status of recreational ice hockey players across a season. Ger. J. Exerc. Sport Res. 2020, 50, 463–469. [Google Scholar] [CrossRef]
Defenders (n = 7) | Forwards (n = 10) | Total (n = 17) | ||
---|---|---|---|---|
Age [years] | 26.6 ± 7.33 | 29.0 ± 6.89 | 28.0 ± 6.95 | |
Height [cm] | 186 ± 4 | 181 ± 5 | 183 ± 6 | |
Body mass [kg] | 91.0 ± 8.97 | 87.8 ± 8.41 | 89.1 ± 8.52 | |
Body fat [%] | 17.6 ± 4.25 | 19.1 ± 5.40 | 18.5 ± 4.87 | |
Resting heart rate [b x min−1] | 65 ± 12 | 64 ± 8 | 64 ± 9 | |
Resting lactate [mmol/L] | 1.29 ± 0.30 | 1.30 ± 0.36 | 1.29 ± 0.33 | |
Playing experience | Years | 8.57 ± 7.59 | 8.20 ± 5.83 | 8.35 ± 6.38 |
Number of matches | 386 ± 383 | 342 ± 268 | 360 ± 310 |
Parameter | Mean ± SD | Range |
---|---|---|
IHCT—stress parameter | ||
Heart rate minute 0 after test [b x min−1] | 180 ± 7 | 170–194 |
Heart rate 2 min after test [b x min−1] | 143 ± 14 | 129–160 |
Heart rate 6 min after test [b x min−1] | 110 ± 9 | 94–128 |
Heart rate 10 min after test [b x min−1] | 104 ± 10 | 89–121 |
Lactate 2 min after test [mmol x L−l] | 13.5 ± 2.35 | 8.54–18.6 |
Lactate 6 min after test [mmol x L−l] | 15.6 ± 2.24 | 12.3–20.6 |
Lactate 10 min after test [mmol x L−l] | 14.9 ± 2.73 | 11.3–18.9 |
Calculated stress parameters | ||
Recovery heart rate (relative), minute 0 to minute 10 after test [%] | 42.3 ± 4.99 | 34.0–52.0 |
Lactate degradation rate per minute, minute 6 to minute 10 after test [mmol x L−1/min] | 0.19 ± 0.28 | −0.35–0.65 |
IHCT–load parameter | ||
10 m sprint without puck [s] | 1.91 ± 0.12 | 1.70–2.05 |
30 m sprint without puck [s] | 4.41 ± 0.15 | 4.16–4.62 |
10 m sprint with puck [s] | 1.96 ± 0.12 | 1.77–2.20 |
30 m sprint with puck [s] | 4.57 ± 0.17 | 4.26–4.93 |
10 m backward sprint without puck [s] | 2.37 ± 0.13 | 2.18–2.57 |
30 m backward sprint without puck [s] | 5.42 ± 0.26 | 5.03–5.87 |
Transition without puck [s] | 16.6 ± 0.49 | 15.6–17.2 |
Transition with puck [s] | 18.5 ± 1.03 | 17.2–21.9 |
Weave without puck [s] | 21.9 ± 0.81 | 20.6–24.0 |
Weave with puck [s] | 22.8 ± 0.69 | 21.4–24.4 |
goals before test | 4.29 ± 1.11 | 2–6 |
goals after test | 4.94 ± 0.97 | 3–6 |
Maximum slap shot before test [km/h] | 134 ± 8.18 | 119–150 |
Maximum slap shot after test [km/h] | 125 ± 8.42 | 111–140 |
Maximum wrist shot before test [km/h] | 108 ± 5.79 | 98–119 |
Maximum wrist shot after test [km/h] | 100 ± 7.65 | 86–116 |
Difference maximum slap shot before and after test [km/h] | 9.12 ± 3.46 | 4–17 |
Difference maximum wrist shot before and after test [km/h] | 8.00 ± 4.95 | −6–18 |
Match performance score | ||
MPS | 0.42 ± 0.69 | −1.00–2.00 |
Parameter | Functional Equation | CI | r2 |
---|---|---|---|
IHCT–stress parameter | |||
Heart rate minute 0 after the test [b x min−1] | y = −0.05 x x + 9.34 | −0.10 to −0.01 | 0.24 |
Heart rate 2 min after the test [b x min−1] | y = −0.01 x x + 1.52 | −0.04 to −0.03 | 0.01 |
Heart rate 6 min after the test [b x min−1] | y = −0.03 x x + 4.01 | −0.07 to −0.01 | 0.20 |
Heart rate 10 min after the test [b x min−1] | y = −0.04 x x + 4.07 | −0.07 to 0.00 | 0.24 |
Lactate 2 min after the test [mmol x L−l] | y = 0.02 x x + 0.14 | −0.14 to 0.18 | 0.01 |
Lactate 6 min after the test [mmol x L−l] | y = 0.09 x x − 0.97 | −0.07 to 0.25 | 0.08 |
Lactate 10 min after the test [mmol x L−l] | y = 0.01 x x + 0.22 | −0.13 to 0.15 | 0.01 |
Calculated stress parameters | |||
Recovery heart rate (relative), minute 0 to minute 10 after test [%] | y = 0.04 x x − 1.46 | −0.03 to 0.12 | 0.10 |
Lactate degradation rate per minute, minute 6 to minute 10 after test [mmol x L−1/min] | y =1.14 x x + 0.21 | −0.08 to 2.35 | 0.21 |
IHCT—load parameter | |||
10 m sprint without puck [s] | y = 2.53 x x − 4.43 | −0.31 to 5.37 | 0.19 |
30 m sprint without puck [s] | y = 2.93 x x − 12.5 | 1.00 to 4.86 | 0.41 |
10 m sprint with puck [s] | y = 1.74 x x − 2.99 | −1.27 to 4.74 | 0.09 |
30 m sprint with puck [s] | y = 1.58 x x − 6.83 | −0.42 to 3.59 | 0.16 |
10 m backward sprint without puck [s] | y = −0.11 x x + 0.67 | −2.96 to 2.75 | 0.00 |
30 m backward sprint without puck [s] | y = 0.13 x x − 0.28 | −1.34 to 1.59 | 0.00 |
Transition without puck [s] | y = −0.52 x x + 9.10 | −1.25 to 0.20 | 0.14 |
Transition with puck [s] | y = 0.01 x x + 0.32 | −0.36 to 0.37 | 0.00 |
Weave without puck [s] | y = −0.06 x x + 1.67 | −0.53 to 0.41 | 0.00 |
Weave with puck [s] | y = −0.07 x x + 1.92 | −0.61 to 0.48 | 0.00 |
Maximum slap shot before test [km/h] | y = 0.04 x x − 4.74 | 0.00 to 0.08 | 0.21 |
Maximum slap shot after test [km/h] | y = 0.03 x x − 2.81 | −0.02 to 0.07 | 0.10 |
Maximum wrist shot before test [km/h] | y = 0.07 x x − 7.27 | 0.02 to 0.12 | 0.36 |
Maximum wrist shot after test [km/h] | y = 0.02 x x − 1.52 | −0.03 to 0.07 | 0.05 |
goals before test | y = 0.17 x x − 0.29 | −0.16 to 0.50 | 0.07 |
goals after test | y = −0.02 x x − 0.51 | −0.41 to 0.37 | 0.00 |
Calculated load parameters | |||
Difference maximum slap shot before and after test [km/h] | y = 0.06 x x − 0.15 | −0.04 to 0.17 | 0.10 |
Difference maximum wrist shot before and after test [km/h] | y = 0.05 x x + 0.01 | −0.02 to 0.12 | 0.14 |
• 30 m sprint without puck: | r2 = 0.41, |
• Maximum wrist shot before testing: | r2 = 0.36, |
• Heart rate minute 0 after test: | r2 = 0.24, |
• Heart rate 10 min after test: | r2 = 0.24, |
• Lactate degradation rate per minute, minute 6 to minute 10 after test: | r2 = 0.21, |
• Maximum slap shot before testing: | r2 = 0.21, |
• Heart rate 6 min after test: | r2 = 0.20. |
Goals | Assists | Points | Plus-Minus | SOG | |
---|---|---|---|---|---|
Heart rate minute 0 after test | −0.37 | −0.48 | −0.55 | −0.36 | −0.47 |
Heart rate 2 min after test | −0.31 | −0.31 | −0.39 | −0.04 | −0.35 |
Heart rate 6 min after test | −0.58 | −0.46 | −0.61 | −0.34 | −0.60 |
Heart rate 10 min after test | −0.53 | −0.34 | −0.49 | −0.40 | −0.46 |
Recovery heart rate (relative), minute 0 to minute 10 after test [%] | 0.43 | 0.17 | 0.31 | 0.28 | 0.31 |
Lactate 2 min after test | −0.26 | −0.26 | −0.32 | −0.03 | −0.06 |
Lactate 6 min after test | −0.18 | 0.02 | −0.05 | 0.28 | 0.09 |
Lactate 10 min after test | −0.25 | −0.17 | −0.24 | 0.05 | −0.12 |
Maximum lactate | −0.23 | −0.05 | −0.13 | 0.21 | 0.01 |
Lactate degradation rate per minute, minute 6 to minute 10 after test [mmol x L−1/min] | 0.23 | 0.46 | 0.48 | 0.44 | −0.06 |
Goals | Assists | Points | Plus-Minus | SOG | |
---|---|---|---|---|---|
10 m sprint without puck | −0.06 | 0.65 | 0.53 | 0.47 | 0.61 |
30 m sprint without puck | 0.36 | 0.58 | 0.63 | 0.50 | 0.76 |
10 m sprint with puck | 0.18 | 0.52 | 0.51 | 0.53 | 0.37 |
30 m sprint with puck | 0.12 | 0.48 | 0.45 | 0.53 | 0.40 |
10 m backward sprint without puck | 0.26 | 0.10 | 0.18 | 0.02 | 0.21 |
30 m backward sprint without puck | 0.15 | 0.23 | 0.26 | 0.03 | 0.31 |
Transition without puck | −0.08 | 0.02 | −0.01 | −0.26 | −0.13 |
Transition with puck | 0.44 | 0.05 | 0.21 | −0.12 | 0.24 |
Weave without puck | −0.08 | −0.05 | −0.07 | −0.43 | 0.09 |
Weave with puck | −0.39 | −0.09 | −0.23 | −0.09 | −0.23 |
goals before test | 0.54 | −0.24 | 0 | 0.07 | −0.03 |
goals after test | −0.18 | −0.03 | −0.09 | −0.11 | −0.01 |
Maximum slap shot before test | 0.08 | 0.31 | 0.30 | 0.57 | 0.30 |
Maximum slap shot after test | 0.06 | 0.14 | 0.14 | 0.38 | 0.13 |
Maximum wrist shot before test | 0.24 | 0.04 | 0.13 | 0.45 | 0.20 |
Maximum wrist shot after test | 0.28 | −0.03 | 0.08 | 0.20 | 0 |
Difference maximum slap shot before and after test | 0.04 | 0.40 | 0.35 | 0.41 | 0.40 |
Difference maximum wrist shot before and after test | −0.16 | 0.10 | 0.03 | 0.21 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwesig, R.; Laudner, K.G.; Delank, K.-S.; Brill, R.; Schulze, S. Relationship between Ice Hockey-Specific Complex Test (IHCT) and Match Performance. Appl. Sci. 2021, 11, 3080. https://doi.org/10.3390/app11073080
Schwesig R, Laudner KG, Delank K-S, Brill R, Schulze S. Relationship between Ice Hockey-Specific Complex Test (IHCT) and Match Performance. Applied Sciences. 2021; 11(7):3080. https://doi.org/10.3390/app11073080
Chicago/Turabian StyleSchwesig, René, Kevin G. Laudner, Karl-Stefan Delank, Richard Brill, and Stephan Schulze. 2021. "Relationship between Ice Hockey-Specific Complex Test (IHCT) and Match Performance" Applied Sciences 11, no. 7: 3080. https://doi.org/10.3390/app11073080
APA StyleSchwesig, R., Laudner, K. G., Delank, K. -S., Brill, R., & Schulze, S. (2021). Relationship between Ice Hockey-Specific Complex Test (IHCT) and Match Performance. Applied Sciences, 11(7), 3080. https://doi.org/10.3390/app11073080