Technological Advances in Ozone and Ozonized Water Spray Disinfection Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Doorn, H.R. Emerging infectious diseases. Medicine 2014, 42, 60–63. [Google Scholar] [CrossRef]
- McMichael, A.J. Environmental and social influences on emerging infectious diseases: Past, present and future. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; St. Pierre, J.M.; Pickering, T.A.; Demirjian, N.L.; Fields, B.K.K.; Desai, B.; Gholamrezanezhad, A. Coronavirus disease 2019 (COVID-19): A modeling study of factors driving variation in case fatality rate by country. Int. J. Environ. Res. Public Health 2020, 17, 8189. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Bani Younes, A.; Hasan, Z. COVID-19: Modeling, Prediction, and Control. Appl. Sci. 2020, 10, 3666. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Kratzel, A.; Todt, D.; V’kovski, P.; Steiner, S.; Gultom, M.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols. Emerg. Infect. Dis. 2020, 26, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Donskey, C.J. Decontamination devices in health care facilities: Practical issues and emerging applications. Am. J. Infect. Control 2019, 47, A23–A28. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.J.; Kanamori, H.; Rutala, W.A. ‘No touch’ technologies for environmental decontamination. Curr. Opin. Infect. Dis. 2016, 29, 424–431. [Google Scholar] [CrossRef]
- Kchaou, M.; Abuhasel, K.; Khadr, M.; Hosni, F.; Alquraish, M. Surface Disinfection to Protect against Microorganisms: Overview of Traditional Methods and Issues of Emergent Nanotechnologies. Appl. Sci. 2020, 10, 6040. [Google Scholar] [CrossRef]
- Bloomfield, S.F. Importance of disinfection as a means of prevention in our changing world hygiene and the home. GMS Krankenhhyg. Interdiszip. 2007, 2, Doc25. [Google Scholar] [PubMed]
- Communication from the Commission to the European Parliament and the Council. In Action Plan Against the Rising Threats from Antimicrobial Resistance; European Commission: Brussels, Belgium, 2011; ISBN 9783540773405.
- Gebel, J.; Exner, M.; French, G.; Chartier, Y.; Christiansen, B.; Gemein, S.; Goroncy-Bermes, P.; Hartemann, P.; Heudorf, U.; Kramer, A.; et al. The role of surface disinfection in infection prevention. GMS Hyg. Infect. Control 2013, 8, Doc10. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, D.; Moreo, G.; Limongelli, L.; Nardone, M.; Carinci, F. Environmental Disinfection Strategies to Prevent Indirect Transmission of SARS-CoV2 in Healthcare Settings. Appl. Sci. 2020, 10, 6291. [Google Scholar] [CrossRef]
- Dellinger, E.P. Prevention of Hospital-Acquired Infections. Surg. Infect. 2016, 17, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Cadnum, J.L.; Jencson, A.L.; Livingston, S.H.; Li, D.F.; Redmond, S.N.; Pearlmutter, B.; Wilson, B.M.; Donskey, C.J. Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV. Am. J. Infect. Control 2020, 48, 951–954. [Google Scholar] [CrossRef]
- Silva, D.F.; Toledo Neto, J.L.; Machado, M.F.; Bochnia, J.R.; Garcez, A.S.; Foggiato, A.A. Effect of photodynamic therapy potentiated by ultrasonic chamber on decontamination of acrylic and titanium surfaces. Photodiagnosis Photodyn. Ther. 2019, 27, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Ueno, S.; Mitsui, M.; Matsumura, Y.; Hatsuoka, T. Construction of Its Evaluation System in Originally Designed Test-Chamber System and Sporicidal Activity of Aerosolized Hypochlorite Solution to Bacillus subtilis Spores. Biocontrol Sci. 2019, 24, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ANVISA—National Health Surveillance Agency. Technical Note No 51/2020/SEI/COSAN/GHCOS/DIRE3/ANVISA. Disinfection of People in Public Places and Hospitals during the Covid 19 Pandemic; ANVISA: Brasilia, Brazil, 2020; pp. 1–6. [Google Scholar]
- Biswal, M.; Kanaujia, R.; Angrup, A.; Ray, P.; Mohan Singh, S. Disinfection tunnels: Potentially counterproductive in the context of a prolonged pandemic of COVID. Public Health 2020, 183, 48–49. [Google Scholar] [CrossRef]
- Maurya, D.; Gohil, M.K.; Sonawane, U.; Kumar, D.; Awasthi, A.; Prajapati, A.K.; Kishnani, K.; Srivastava, J.; Age, A.; Pol, R.; et al. Development of Autonomous Advanced Disinfection Tunnel to Tackle External Surface Disinfection of COVID-19 Virus in Public Places. Trans. Indian Natl. Acad. Eng. 2020, 5, 281–287. [Google Scholar] [CrossRef]
- ANVISA—National Health Surveillance Agency. Technical Note No 34/2020/SEI/COSAN/GHCOS/DIRE3/ANVISA. Recommendations and Alerts on Disinfection Procedures in Public Places Carried Out during the COVID-19 Pandemic; ANVISA: Brasilia, Brazil, 2020. [Google Scholar]
- Wickramatillake, A.; Kurukularatne, C. SARS-CoV-2 human disinfection chambers: A critical analysis. Occup. Med. 2020, 70, 330–334. [Google Scholar] [CrossRef]
- Dev Kumar, G.; Ravishankar, S.; Juneja, V.K. Interventions for Fresh Produce. In Microbial Control and Food Preservation; Springer: New York, NY, USA, 2017; pp. 199–223. ISBN 9781493975563. [Google Scholar]
- Pruett, S.B.; Tan, W.; Sebastian, T.; Liu, D. Inflammation and Organ Failure. In Comprehensive Toxicology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 5, pp. 299–321. ISBN 9780080468686. [Google Scholar]
- Scott, D.B.; Lesher, E.C. Effect of ozone on survival and permeability of Escherichia coli. J. Pathol. Bacteriol. 1963, 85, 567–568. [Google Scholar] [CrossRef] [Green Version]
- Dev Kumar, G.; Williams, R.C.; Sumner, S.S.; Eifert, J.D. Effect of ozone and ultraviolet light on Listeria monocytogenes populations in fresh and spent chill brines. Food Control 2016, 59, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Yano, H.; Nakano, R.; Suzuki, Y.; Nakano, A.; Kasahara, K.; Hosoi, H. Inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by gaseous ozone treatment. J. Hosp. Infect. 2020, 106, 837–838. [Google Scholar] [CrossRef]
- Blanchard, E.L.; Lawrence, J.D.; Noble, J.A.; Xu, M.; Joo, T.; Ng, N.L.; Schmidt, B.E.; Santangelo, P.J.; Finn, M.G. Enveloped Virus Inactivation on Personal Protective Equipment by Exposure to Ozone. medRxiv Prepr. Serv. Heal. Sci. 2020. [Google Scholar] [CrossRef]
- Jia-min, Z.; Chong-yi, Z.; Geng-fu, X.; Yuan-quan, Z.; Rong, G. Examination of the Efficacy of Ozone Solution Disinfectant in in Activating Sars Virus. Chin. J. Disinfect. 2004, 21, 27–28. [Google Scholar]
- Breidablik, H.J.; Lysebo, D.E.; Johannessen, L.; Skare, Å.; Andersen, J.R.; Kleiven, O.T. Ozonized water as an alternative to alcohol-based hand disinfection. J. Hosp. Infect. 2019, 102, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Saito, K.; Kashiwazaki, J.; Aoyagi, T.; Arai, K.; Hara, Y.; Kobari, S.; Mori, H.; Ohashi, K.; Takano, Y.; et al. Evaluation of ozonated water using ASTM E1174 for standardized testing of handwash formulations for healthcare personnel. J. Hosp. Infect. 2018, 100, 211–213. [Google Scholar] [CrossRef]
- Shin, G.-A.; Sobsey, M.D. Reduction of Norwalk Virus, Poliovirus 1, and Bacteriophage MS2 by Ozone Disinfection of Water. Appl. Environ. Microbiol. 2003, 69, 3975–3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuroiu, C.L.; Andrian, S.; Stoleriu, S.; Scurtu, M.; Țănculescu, O.; Poroch, V.; Sălceanu, M. The Combination of Diode Laser and Ozonated Water in the Treatment of Complicated Pulp Gangrene. Appl. Sci. 2020, 10, 4203. [Google Scholar] [CrossRef]
- Suchomel, M.; Lenhardt, A.; Kampf, G.; Grisold, A. Enterococcus hirae, Enterococcus faecium and Enterococcus faecalis show different sensitivities to typical biocidal agents used for disinfection. J. Hosp. Infect. 2019, 103, 435–440. [Google Scholar] [CrossRef]
- National Institute of Health. Transforming Clinical Research in the United States; National Academies Press (US): Washington, DC, USA, 2010; ISBN 9780309153324. [Google Scholar]
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Madhav, N.; Oppenheim, B.; Gallivan, M.; Mulembakani, P.; Rubin, E.; Wolfe, N. Pandemics: Risks, Impacts, and Mitigation. In Disease Control Priorities, Third Edition (Volume 9): Improving Health and Reducing Poverty; Jamison, D.T., Gelband, H., Horton, S., Jha, P., Laxminarayan, R., Mock, C.N., Nugent, R., Eds.; The World Bank: Washington, DC, USA, 2017; pp. 315–345. ISBN 9781464805271. [Google Scholar]
- Khan, M.H.; Yadav, H. Sanitization During and After COVID-19 Pandemic: A Short Review. Trans. Indian Natl. Acad. Eng. 2020. [Google Scholar] [CrossRef]
- Ministry of Health 10 Years Since the Global Outbreak of H1N1. Available online: http://www.blog.saude.gov.br/index.php/53845-10-anos-do-surto-global-de-h1n1#:~:text=Emabrilde2009%2Ca,mêsdemarçode2009 (accessed on 6 December 2020).
- Giuliani, G.; Ricevuti, G.; Galoforo, A.; Franzini, M. Microbiological aspects of ozone: Bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Ther. 2018, 3, 1573–1580. [Google Scholar] [CrossRef]
- World Health Organization Emergencies Preparedness, Response: Diseases. Available online: https://www.who.int/csr/disease/swineflu/frequently_asked_questions/pandemic/en/ (accessed on 6 December 2020).
- Ministry of Health. Zika Virus in Brazil; Secretariat of Health Surveillance: Brasília, Brazil, 2017; ISBN 9788533424821. [Google Scholar]
- Lin, S.-M.; Jacobs, P.T.; Wang, J.-H.; Platt, R.C.; Zhu, P.C. Monitoring of Cleaning Process; Ethicon Inc.: Cornelia, GA, USA, 2009. [Google Scholar]
- Bedard, C.; Dufresne, S.; Leblond, H.; Martel, C.; Martel, K. Ozone Sterilization Method; TSO₃ Inc.: Québec, QC, Canada, 2009. [Google Scholar]
- Gutman, J. Ozone Containing Product Package. U.S. Patent 20090011044, 8 January 2009. [Google Scholar]
- Dufresne, S.; Martel, C.; Leblond, H.; Dassie, N.; Martel, K. Sterilization Method and Apparatus; TSO₃ Inc.: Québec, QC, Canada, 2016. [Google Scholar]
- Megahed, A.; Aldridge, B.; Lowe, J. The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS ONE 2018, 13, e0196555. [Google Scholar] [CrossRef] [Green Version]
- Fontes, B.; Cattani Heimbecker, A.M.; de Souza Brito, G.; Costa, S.F.; van der Heijden, I.M.; Levin, A.S.; Rasslan, S. Effect of low-dose gaseous ozone on pathogenic bacteria. BMC Infect. Dis. 2012, 12, 358. [Google Scholar] [CrossRef] [Green Version]
- US EPA—Office of Water EPA Aternative Disinfection and Oxidant Guidance Manual. 1999; pp. 1–328. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/2000229L.PDF?Dockey=2000229L.PDF (accessed on 6 December 2020).
- Sharma, M.; Hudson, J.B. Ozone gas is an effective and practical antibacterial agent. Am. J. Infect. Control 2008, 36, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, W.J.; Bahnfleth, W.P.; Whittam, T.S. Bactericidal Effects of High Airborne Ozone Concentrations on Escherichia coli and Staphylococcus aureus. Ozone Sci. Eng. 1998, 20, 205–221. [Google Scholar] [CrossRef]
- Ouf, S.A.; Moussa, T.A.; Abd-Elmegeed, A.M.; Eltahlawy, S.R. Anti-fungal potential of ozone against some dermatophytes. Braz. J. Microbiol. 2016, 47, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristiano, L. Could ozone be an effective disinfection measure against the novel coronavirus (SARS-CoV-2)? J. Prev. Med. Hyg. 2020, 61, E301–E303. [Google Scholar] [CrossRef]
- Wigginton, K.R.; Kohn, T. Virus disinfection mechanisms: The role of virus composition, structure, and function. Curr. Opin. Virol. 2012, 2, 84–89. [Google Scholar] [CrossRef]
- Gavazza, A.; Marchegiani, A.; Rossi, G.; Franzini, M.; Spaterna, A.; Mangiaterra, S.; Cerquetella, M. Ozone Therapy as a Possible Option in COVID-19 Management. Front. Public Heal. 2020, 8, 1–7. [Google Scholar] [CrossRef]
- Victorin, K. Review of the genotoxicity of ozone. Mutat. Res. Genet. Toxicol. 1992, 277, 221–238. [Google Scholar] [CrossRef]
- Murray, B.K.; Ohmine, S.; Tomer, D.P.; Jensen, K.J.; Johnson, F.B.; Kirsi, J.J.; Robison, R.A.; O’Neill, K.L. Virion disruption by ozone-mediated reactive oxygen species. J. Virol. Methods 2008, 153, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.B.; Sharma, M.; Vimalanathan, S. Development of a Practical Method for Using Ozone Gas as a Virus Decontaminating Agent. Ozone Sci. Eng. 2009, 31, 216–223. [Google Scholar] [CrossRef]
- Muzhi, Z. Ozone: A Powerful Weapon to Combat COVID-19 Outbreak. Available online: http://www.china.org.cn/opinion/2020-02/26/content_75747237_4.htm (accessed on 13 November 2020).
- Petry, G.; Rossato, L.G.; Nespolo, J.; Kreutz, L.C.; Bertol, C.D. In Vitro Inactivation of Herpes Virus by Ozone. Ozone Sci. Eng. 2014, 36, 249–252. [Google Scholar] [CrossRef]
- Brié, A.; Boudaud, N.; Mssihid, A.; Loutreul, J.; Bertrand, I.; Gantzer, C. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiol. 2018, 70, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.J.; Chen, N.; Shen, Z.Q.; Yin, J.; Qiu, Z.G.; Miao, J.; Yang, Z.W.; Shi, D.Y.; Wang, H.R.; Wang, X.W.; et al. Inactivation of Poliovirus by Ozone and the Impact of Ozone on the Viral Genome. Biomed. Environ. Sci. 2019, 32, 324–333. [Google Scholar] [CrossRef]
- Białoszewski, D.; Bocian, E.; Bukowska, B.; Czajkowska, M.; Sokół-Leszczyńska, B.; Tyski, S. Antimicrobial activity of ozonated water. Med. Sci. Monit. 2010, 16, MT71–MT75. [Google Scholar]
- Bezirtzoglou, E.; Cretoiu, S.-M.; Moldoveanu, M.; Alexopoulos, A.; Lazar, V.; Nakou, M. A quantitative approach to the effectiveness of ozone against microbiota organisms colonizing toothbrushes. J. Dent. 2008, 36, 600–605. [Google Scholar] [CrossRef]
- Hubbezoglu, I.; Zan, R.; Tunç, T.; Sumer, Z.; Hurmuzlu, F. Antifungal Efficacy of Aqueous and Gaseous Ozone in Root Canals Infected by Candida albicans. Jundishapur J. Microbiol. 2013, 6, 1–3. [Google Scholar] [CrossRef] [Green Version]
- World Intellectual Property Organization Frequently Asked Questions: Patents. Available online: https://www.wipo.int/patents/en/faq_patents.html#:~:text=Exclusiverights%3APatentsprovideyou,filingofthepatentapplication (accessed on 6 December 2020).
- INAPI—National Institute of Industrial Property of Chile Patents: Types of Patents. Available online: https://www.ipaustralia.gov.au/patents/understanding-patents/types-patents (accessed on 6 December 2020).
- Song, C.H.; Han, J.-W. Patent cliff and strategic switch: Exploring strategic design possibilities in the pharmaceutical industry. Springerplus 2016, 5, 692. [Google Scholar] [CrossRef] [Green Version]
- TSO3 Inc. Available online: https://www.tso3.com/ (accessed on 19 November 2020).
- ETHICON Inc. Available online: https://www.jnjmedicaldevices.com/ (accessed on 19 November 2020).
- RENOSEM CO LTD. Available online: http://renosem.com/company/ceo-message/ (accessed on 19 November 2020).
- World Intellectual Property Organization PCT FAQs. Available online: https://www.wipo.int/export/sites/www/pct/en/basic_facts/faqs_about_the_pct.pdf (accessed on 5 December 2020).
- World Intellectual Property Organization. Patent Cooperation Treaty (PCT); World Intellectual Property Organization: Washington, DC, USA, 2001. [Google Scholar]
- Schwartz, P.; Garvey, S.; Carmichael, J.; Meier, E.; Guzman-Cottrill, J. Disinfecting Articles with Ozone; Éclair Medical Systems Inc.: Portland, OR, USA, 2020. [Google Scholar]
- Joshi, A. Devices for Disinfection, Deodorization, and/or Sterilization of Objects; Microlin LLC: Salt Lake City, UT, USA, 2019. [Google Scholar]
- Hu, P.K.; Young, L. Ozone Sterilization. Device. Patent KR201646115A, 25 October 2017. [Google Scholar]
- Kaisha, U.D.K. Sterile Environment Maintenance Method of Operation Chamber, Sterile Environment Maintenance. Device. Patent CN202010309498A, 13 November 2020. [Google Scholar]
- Dufresne, S.; Martel, C.; Leblond, H.; Dassie, N.; Martel, K. Method for Sterilizing an Article in a Sealable Sterilization Chamber; TSO₃ Inc.: Québec, QC, Canada, 2018. [Google Scholar]
- Genial Medical Gennail YC400 Walk through Disinfection Tunnel Anti COVID-19. Available online: https://www.genialmedical.com/wz.aspx?id=44 (accessed on 21 December 2020).
- BROAD Group Ltd. BROAD Disinfection Cabin. Available online: http://en.broad.com/ProductShow-100.aspx (accessed on 21 December 2020).
- myOzone Tunnel Disinfecting People with Ozone Mist. Available online: https://myozone.com.br/tunel-desinfetante-de-pessoas-com-nevoa-de-ozonio/ (accessed on 21 December 2020).
- Federal Technological University of Paraná Researchers Create Disinfection Tunnel with 100% National Technology. Available online: http://portal.utfpr.edu.br/noticias/geral/covid-19/pesquisadores-da-utfpr-desenvolvem-tunel-de-desinfeccao-com-tecnologia-100-nacional (accessed on 21 December 2020).
- Tropical Clean Individual Disinfection System Covid-19. Available online: https://tropicalestufas.com.br/tropical-clean-sistema-de-desinfeccao-individual/# (accessed on 21 December 2020).
- Eurobras Ozonated Disinfection Chamber. Available online: https://www.eurobras.com.br/camara-de-desinfeccao-ozonizada/ (accessed on 21 December 2020).
- B3Zonio Ozone-Based Individual Disinfection Cabin. Available online: https://www.b3zonio.com/cabinededesinfeccao (accessed on 21 December 2020).
- OZ-AIR® Ozone Based Sterilization Tunnel. Available online: https://pdf.indiamart.com/impdf/22288383630/MY-197008/ozone-based-sterilization-tunnels.pdf (accessed on 21 December 2020).
- SafeWay Disinfection Cabin. Available online: https://getsafeway.com/cabin-en (accessed on 21 December 2020).
- Kim, D.; Kang, D. UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System. Appl. Environ. Microbiol. 2018, 84, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, L.; Wu, J.; Zhang, E.; Yi, Y.; Zhang, Z.; Zhang, J.; Qi, J. Disinfection efficiency of positive pressure respiratory protective hood using fumigation sterilization cabinet. Biosaf. Health 2019, 1, 46–53. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection UVC LAMPS and SARS-COV-2. Available online: https://www.icnirp.org/en/activities/news/news-article/sars-cov-2-and-uvc-lamps.html (accessed on 21 December 2020).
CPC Code | Related To |
---|---|
A61L 2202/122 | Chambers for sterilization |
A61L2/183 | Ozone dissolved in a liquid |
A61L2/202 | Ozone (gas) |
Application | Concentration | Microorganisms | Reference |
---|---|---|---|
Virus | |||
O3(g) | 1 and 6 ppm | SARS-CoV-2 | [29] |
O3(g) | 27.73 ppm | SARS-CoV-1 | [31] |
O3(g) | 20–25 ppm | MCoV (murine coronavirus) | [61] |
O3(g) | 0.02–0.05 ppm | Herpes simplex virus 1 (HSV-1) Bovine herpes virus 1 (BoHV1) | [63] |
O3(aq) | 3 and 5 ppm | Murine norovirus (MNV-1) Hepatitis A virus (HAV) | [64] |
O3(aq) | 1.44 mg/L | Poliovirus Type 1 | [65] |
Bacteria | |||
O3(aq) | 0.4 and 0.8 ppm | Escherichia coli | [32] |
O3(aq) | 1.2–3.6 μg/mL | Pseudomonas aeruginosa ATCC 15442 Staphylococcus aureus ATCC 6538 Escherichia coli NCTC 10538 Enterococcus hirae ATCC 1054 | [66] |
O3(g) | 3–3.5 ppm | Streptococcus spp. Staphylococcus aureus Staphylococcus epidermidis Aerococcus viridans Enterococcus faecalis Enterococcus faecium Lactobacillus sp. Escherichia coli Pseudomonas aeruginosa | [67] |
Fungi | |||
O3(g) | 0.5–20 μg/mL | Microsporum canis Microsporum gypseum Trichophyton rubrum Trichophyton interdigitale | [55] |
O3(g) | 2100 ppm/min | Candida albicans | [68] |
O3(aq) | 4 mg/mL | Candida albicans | [68] |
O3(aq) | 1.5–3 μg/mL | Aspergillus brasiliensis ATCC 16404 | [68] |
Title | Application Number | Assignee or Inventor | Deposited Country | Related To |
---|---|---|---|---|
Disinfecting articles with O3 | US15877036A | Éclair Medical Systems Inc. | United States | Methods, apparatus, and systems for disinfecting articles with O3(g). Involves sterilization chamber for medical articles that are confined and sealed, so as to not interact with external atmosphere. O3 concentrations are applied until complete material disinfection or sterilization [77]. |
Devices for disinfection, deodorization, and/or sterilization of objects | US15533653A | Microlin LLC | United States | Treatment chamber in which an object can be disinfected, deodorized, and/or sterilized (e.g., endoscope components). Includes nebulizer, Fenton generator, and hydrogen peroxide in presence of nanoparticle catalyst and UV light, and O3(g) can be applied as additional treatment agent [78]. |
O3 Sterilization Device | KR201646115A | Hu, P.K and Young, L | South Korea | O3(g) sterilization device for medical devices comprising container, control box, sterile room, discharge tube, connection pipe, air compressor, and neutralization [79]. |
Sterile environment maintenance method of operation chamber, sterile environment maintenance device | CN202010309498A | Yushinomi Electric Co. | China | Method for maintaining sterile environment of working chambers. Process generates O3 from wavelength-long violet rays, introducing O3(g) into the chamber, and breaking down introduced O3 into oxygen radicals [80]. |
Method for sterilization of an article in a sealable sterilization chamber | BR12201310297A | TSO3 INC. | Brazil | Sterilization method and device containing hydrogen peroxide or O3(g) as sterilizing agent for sterilization of medical articles or instruments (e.g., gastroscopes and colonoscopes) in sealable sterilization chamber [81]. |
Apparatus, method and software product for hand sanitization by application of ozonated water | BR112017015030A2 | SCAN UNIC APS | Brazil | Disinfection chamber that comprises ozone water output of ozone water supply for delivery of O3(aq) to hands when inserted into the apparatus. |
Company/Institution | Product | Country of Origin | Reference |
---|---|---|---|
Genial Medical | Disinfection Tunnel Anti-COVID-19 | China | [82] |
Broad Group Ltd. | BROAD Disinfection Cabin | China | [83] |
myOzone | Ozone Mist Disinfectant Tunnel | Brazil | [84] |
Federal Technological University of Paraná | Wet ozone disinfection booth | Brazil | [85] |
Tropical Clean | Tropical Clean-Individual Disinfection System | Brazil | [86] |
Eurobras | Ozonized Disinfection Chamber | Brazil | [87] |
B3Zonio | Individual Body Disinfection Cabin | Brazil | [88] |
OZ-AIR® | O3-based sterilization tunnel | India | [89] |
SafeWay | Disinfection cabin | United States | [90] |
Title | Main Findings and/or Conclusions | Reference |
---|---|---|
Development of Autonomous Advanced Disinfection Tunnel to Tackle External-Surface Disinfection of COVID-19 Virus in Public Places | The technology is based on a disinfection tunnel to disinfect external surfaces of COVID-19 such as clothes and open body sections in public places such as airports, office complexes, schools, and malls. It is based on the use of two chambers: the first sprays a mist of herbal disinfectant solution or sodium hypochlorite solution, and the second is hot-air and far-ultraviolet C (far-UVC). | [22] |
UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System | Evaluation of air disinfection using a disinfection chamber using a set of UVC light-emitting diodes (LED) against microorganisms. Results showed efficacy in viral inactivation, such as MS2 bacteriophage, and against bacteria (e.g., Salmonella enterica serovar Typhimurium) and fungi (e.g., Aspergillus flavu). | [91] |
Construction of Its Evaluation System in Originally Designed Test-Chamber System and Sporicidal Activity of Aerosolized Hypochlorite Solution to Bacillus subtilis Spores | Disinfection chamber using a 5% sodium hypochlorite solution-spraying system. Results demonstrated efficacy in the inactivation of Bacillus subtilis spores in the process of decontaminating small surface areas. | [19] |
Disinfection efficiency of positive pressure respiratory protective hood using fumigation sterilization cabinet | Fumigation cabinet based on hydrogen peroxide for the disinfection of positive pressure respiratory protective hoods (PPRPH) to allow for the safe reuse of protective equipment. Results showed effectiveness in the decontamination process against Geobacillus stearothermophilus. Besides bacterial inactivation being effective, the physical and chemical properties of the equipment were maintained. | [92] |
CPC Code | Related To |
---|---|
A61L2/202 | Ozone (gas) |
A61L 2202/122 | Chambers for sterilization |
A61L 2202/14 | Means for controlling sterilization processes, data processing, presentation and storage means, e.g., sensors, controllers, programs |
A61L 2202/24 | Medical instruments, e.g., endoscopes, catheters, sharps |
A61L 2/24 | Apparatus using programmed or automatic operation |
A61L 2/208 | Hydrogen peroxide |
A61L 2/14 | Plasma, i.e., ionized gases |
A 61L 2/20 | Gaseous substances, e.g., vapors |
A61L 2202/15 | Biocide distribution means, e.g., nozzles, pumps, manifolds, fans, baffles, sprayers |
A61L 2202/13 | Biocide decomposition means, e.g., catalysts, sorbent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascarenhas, L.A.B.; Oliveira, F.O.; da Silva, E.S.; dos Santos, L.M.C.; de Alencar Pereira Rodrigues, L.; Neves, P.R.F.; Santos, A.Á.B.; Moreira, G.A.F.; Lobato, G.M.; Nascimento, C.; et al. Technological Advances in Ozone and Ozonized Water Spray Disinfection Devices. Appl. Sci. 2021, 11, 3081. https://doi.org/10.3390/app11073081
Mascarenhas LAB, Oliveira FO, da Silva ES, dos Santos LMC, de Alencar Pereira Rodrigues L, Neves PRF, Santos AÁB, Moreira GAF, Lobato GM, Nascimento C, et al. Technological Advances in Ozone and Ozonized Water Spray Disinfection Devices. Applied Sciences. 2021; 11(7):3081. https://doi.org/10.3390/app11073081
Chicago/Turabian StyleMascarenhas, Luis Alberto Breda, Fabricia Oliveira Oliveira, Eduardo Santos da Silva, Laerte Marlon Conceição dos Santos, Leticia de Alencar Pereira Rodrigues, Paulo Roberto Freitas Neves, Alex Álisson Bandeira Santos, Greta Almeida Fernandes Moreira, Gabriela Monteiro Lobato, Carlos Nascimento, and et al. 2021. "Technological Advances in Ozone and Ozonized Water Spray Disinfection Devices" Applied Sciences 11, no. 7: 3081. https://doi.org/10.3390/app11073081
APA StyleMascarenhas, L. A. B., Oliveira, F. O., da Silva, E. S., dos Santos, L. M. C., de Alencar Pereira Rodrigues, L., Neves, P. R. F., Santos, A. Á. B., Moreira, G. A. F., Lobato, G. M., Nascimento, C., Gerhardt, M., & Machado, B. A. S. (2021). Technological Advances in Ozone and Ozonized Water Spray Disinfection Devices. Applied Sciences, 11(7), 3081. https://doi.org/10.3390/app11073081