The Diffusion Role in Adsorption of Hexavalent Chromium on Solid Olive Mill Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biomass
2.3. Preparation of Cr(VI) Stock Solution
2.4. Preparation of Natural Adsorbent
2.5. Preparation of Treated Adsorbent
2.6. Uptake Measurements
3. Diffusion-Binding Model
4. Results and Discussion
4.1. Thermal Characterization of Biomass WP
4.2. Spectral Characterization of Cr(VI) Aqueous Solutions
4.3. Uptake Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LAP | Laponite |
UPW | Ultra pure water |
WP | Wet pomace |
LAPWP | Wet pomace treated with laponite |
DSC | Differential scanning calorimetry |
TG | Thermal gravimetry |
DTA | Differential thermal gravimetry |
Integral absorbance at concentration C | |
Diffusion coefficient of species A | |
Molar concentration of species A | |
Amount of species A adsorbed on solid | |
Wavelength corresponding to the maximum of the band | |
Diffusion lifetime of species A | |
Diffusion lifetime of species A at zero solid concentration |
References
- Boskou, D. Olive Oil: Chemistry and Technology; Boskou, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Del Caro, A.; Vacca, V.; Poiana, M.; Fenu, P.; Piga, A. Influence of technology, storage and exposure on components of extra virgin olive oil (Bosana cv) from whole and de-stoned fruits. Food Chem. 2006, 98, 311–316. [Google Scholar] [CrossRef]
- Morvová, M.; Onderka, M.; Morva, I.; Chudoba, V. Pyrolysis of olive mill waste with on-line and ex-post analysis. Waste Biomass Valorization 2019, 10, 511–520. [Google Scholar] [CrossRef]
- Guida, M.Y.; Hannioui, A. A review on thermochemical treatment of biomass: Pyrolysis of olive mill wastes in comparison with other types of biomass. Prog. Agric. Eng. Sci. 2016, 12, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ouazzane, H.; Laajine, F.; El Yamani, M.; El Hilaly, J.; Rharrabti, Y.; Amarouch, M.Y.; Mazouzi, D. Olive mill solid waste characterization and recycling opportunities: A review. Prog. Agric. Eng. Sci. 2017, 8, 2632–2650. [Google Scholar]
- Dinc, G.; Isik, F.; Yel, E. Effects of Pyrolysis Conditions on Organic Fractions and Heat Values of Olive Mill Wastes Pyrolysis Liquid. J. Energy Resour. Technol. 2020, 142, 1–13. [Google Scholar] [CrossRef]
- Martinez-Garcia, G.; Bachmann, R.T.; Williams, C.J.; Burgoyne, A.; Edyvean, R.G.J. Olive oil waste as a biosorbent for heavy metals. Int. Biodeterior. Biodegrad. 2006, 58, 231–238. [Google Scholar] [CrossRef]
- Mosca, M.; Cuomo, F.; Lopez, F.; Palumbo, G.; Bufalo, G.; Ambrosone, L. Adsorbent properties of olive mill wastes for chromate removal. Desalin. Water Treat. 2015, 54, 275–283. [Google Scholar] [CrossRef]
- Venditti, F.; Cuomo, F.; Ceglie, A.; Ambrosone, L.; Lopez, F. Effects of sulfate ions and slightly acidic pH conditions on Cr(VI) adsorption onto silica gelatin composite. J. Hazard. Mater. 2010, 173, 552–557. [Google Scholar] [CrossRef]
- Al-Malah, K.; Azzam, M.O.J.; Abu-Lail, N.I. Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep. Purif. Technol. 2000, 20, 225–234. [Google Scholar] [CrossRef]
- Al Bsoul, A.; Hailat, M.; Abdelhay, A.; Tawalbeh, M.; Jum’h, I.; Bani-Melhem, K. Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles. Sci. Total. Environ. 2019, 668, 1327–1334. [Google Scholar] [CrossRef]
- Barbieri, L.; Andreola, F.; Lancellotti, I.; Taurino, R. Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Manag. 2013, 33, 2307–2315. [Google Scholar] [CrossRef]
- Yuan, G. Natural and modified nanomaterials as sorbents of environmental contaminants. J. Environ. Sci. Health Part A 2004, 39, 2661–2670. [Google Scholar] [CrossRef]
- Ochoa-Cornejo, F.; Bobet, A.; Johnston, C.; Santagata, M.; Sinfield, J.V. Dynamic properties of a sand–nanoclay composite. Géotechnique 2020, 70, 210–225. [Google Scholar] [CrossRef]
- Di Nezza, F.; Caruso, C.; Costagliola, C.; Ambrosone, L. Reaction-diffusion model as framework for understanding the role of riboflavin in “eye defence” formulations. RSC Adv. 2020, 70, 14965–14971. [Google Scholar] [CrossRef] [Green Version]
- Salvestrini, S. Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models. React. Kinet. Mech. Catal. 2018, 123, 455–472. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Great Britain, 1979. [Google Scholar]
- Venditti, F.; Bufalo, G.; Lopez, F.; Ambrosone, L. Pollutants adsorption from aqueous solutions: The role of the mean lifetime. Chem. Eng. Sci. 2011, 23, 5922–5929. [Google Scholar] [CrossRef]
- Bufalo, G.; Costagliola, C.; Mosca, M.; Ambrosone, L. Thermal analysis of milling products and its implications in self-ignition. J. Therm. Anal. Calorim. 2014, 1115, 1989–1998. [Google Scholar] [CrossRef]
- Gomez-Martin, A.; Chacartegui, R.; Ramirez-Rico, J.; Martinez-Fernez, J. Performance improvement in olive stone’s combustion from a previous carbonization transformation. Fuel 2018, 228, 254–262. [Google Scholar] [CrossRef]
- Fenti, A.; Chianese, S.; Iovino, P.; Musmarra, D.; Salvestrini, S. Cr(VI) Sorption from Aqueous Solution: A Review. Appl. Sci. 2020, 10, 6477. [Google Scholar] [CrossRef]
- Di Nezza, F.; Guerra, G.; Lopez, F.; Ambrosone, L. Pollutants adsorption from aqueous solutions: The role of the mean lifetime. Dye. Pigment. 2016, 134, 342–347. [Google Scholar] [CrossRef]
- Torrent, M.; Duran, M.; Solà, M. Theorethical study on the ground and excited states of Chromyl Fluoride (CrO2F2). Sci. Gerund. 1997, 23, 5–16. [Google Scholar]
- Cinelli, G.; Guerra, G.; Bufalo, G.; Lopez, F.; Ambrosone, L. Cooperativity between Dimerization and Binding Equilibria in the Ternary System Laponite-Indocyanine Green-Water. ChemEngineering 2021, 5, 6. [Google Scholar] [CrossRef]
- Molino, B.; Bufalo, G.; De Vincenzo, A.; Ambrosone, L. Semiempirical Model for Assessing Dewatering Process by Flocculation of Dredged Sludge in an Artificial Reservoir. Appl. Sci. 2020, 10, 3051. [Google Scholar] [CrossRef]
- Iadicicco, N.; Paduano, L.; Vitagliano, V. Diffusion coefficients for the system potassium chromate—Water at 25 ∘C. J. Chem. Eng. Data 1996, 41, 529–533. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bufalo, G.; Di Nezza, F.; Perna, M.; Salvestrini, S.; Ambrosone, L. The Diffusion Role in Adsorption of Hexavalent Chromium on Solid Olive Mill Waste. Appl. Sci. 2021, 11, 3096. https://doi.org/10.3390/app11073096
Bufalo G, Di Nezza F, Perna M, Salvestrini S, Ambrosone L. The Diffusion Role in Adsorption of Hexavalent Chromium on Solid Olive Mill Waste. Applied Sciences. 2021; 11(7):3096. https://doi.org/10.3390/app11073096
Chicago/Turabian StyleBufalo, Gennaro, Francesca Di Nezza, Marco Perna, Stefano Salvestrini, and Luigi Ambrosone. 2021. "The Diffusion Role in Adsorption of Hexavalent Chromium on Solid Olive Mill Waste" Applied Sciences 11, no. 7: 3096. https://doi.org/10.3390/app11073096
APA StyleBufalo, G., Di Nezza, F., Perna, M., Salvestrini, S., & Ambrosone, L. (2021). The Diffusion Role in Adsorption of Hexavalent Chromium on Solid Olive Mill Waste. Applied Sciences, 11(7), 3096. https://doi.org/10.3390/app11073096