Broadband Metallic Carbon Nanotube Saturable Absorber for Ultrashort Pulse Generation in the 1500–2100 nm Spectral Range
Abstract
:1. Introduction
2. Saturable Absorber Fabrication and Characterization
2.1. Metallic-SWCNT Film Fabrication
2.2. Metallic-SWCNT Film Characterization
2.3. Absorption in Metallic-SWCNT
2.4. Nonlinear Transmission of the m-SWCNT Saturable Absorber
3. All-Fiber Lasers Mode-Locked with m-SWCNT Saturable Absorber
3.1. Erbium-Doped Fiber Laser
3.2. Thulium-Doped Fiber Laser
3.3. Holmium-Doped Fiber Laser
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Noyce, S.G.; Doherty, J.L.; Cheng, Z.; Han, H.; Bowen, S.; Franklin, A.D. Electronic Stability of Carbon Nanotube Transistors Under Long-Term Bias Stress. Nano Lett. 2019, 19, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, F.; Wang, X.; Wang, X.; Flahaut, E.; Liu, X.; Li, Y.; Wang, X.; Xu, Y.; Shi, Y.; et al. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589. [Google Scholar] [CrossRef] [Green Version]
- Tatsuura, S.; Furuki, M.; Sato, Y.; Iwasa, I.; Tian, M.; Mitsu, H. Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications. Adv. Mater. 2003, 15, 534–537. [Google Scholar] [CrossRef]
- Chopra, S.; McGuire, K.; Gothard, N.; Rao, A.; Pham, A. Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 2003, 83, 2280–2282. [Google Scholar] [CrossRef]
- Chen, Y.C.; Raravikar, N.R.; Schadler, L.S.; Ajayan, P.M.; Zhao, Y.P.; Lu, T.M.; Wang, G.C.; Zhang, X.C. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm. Appl. Phys. Lett. 2002, 81, 975–977. [Google Scholar] [CrossRef]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In Proceedings of the OFC 2003 Optical Fiber Communications Conference, Atlanta, GA, USA, 23 March 2003; p. PD44. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene Mode-Locked Ultrafast Laser. ACS Nano 2010, 4, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, J.H. A Passively Q-Switched Holmium-Doped Fiber Laser with Graphene Oxide at 2058 nm. Appl. Sci. 2021, 11, 407. [Google Scholar] [CrossRef]
- Sotor, J.; Sobon, G.; Macherzynski, W.; Paletko, P.; Abramski, K.M. Black phosphorus a new saturable absorber material for ultrashort pulse generation. Appl. Phys. Lett. 2015, 107, 051108. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.C.; Liu, M.; Guo, Z.N.; Jiang, X.F.; Luo, A.P.; Zhao, C.J.; Yu, X.F.; Xu, W.C.; Zhang, H. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 2015, 23, 20030–20039. [Google Scholar] [CrossRef] [PubMed]
- Jhon, Y.I.; Lee, J.; Seo, M.; Lee, J.H.; Jhon, Y.M. Van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber. Adv. Opt. Mater. 2019, 7, 1801745. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.; Kelleher, E.; Howe, R.; Hu, G.; Torrisi, F.; Hasan, T.; Popov, S.; Taylor, J. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express 2014, 22, 31113–31122. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Wang, Y.; Ma, C.; Han, L.; Jiang, B.; Gan, X.; Hua, S.; Zhang, W.; Mei, T.; Zhao, J. WS2 mode-locked ultrafast fiber laser. Sci. Rep. 2015, 5, 7965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Zhang, X.; Wang, J.; Li, X.; Chen, J. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 2015, 23, 11453–11461. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106. [Google Scholar] [CrossRef]
- Sotor, J.; Sobon, G.; Macherzynski, W.; Paletko, P.; Grodecki, K.; Abramski, K.M. Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber. Opt. Mater. Express 2014, 4, 1. [Google Scholar] [CrossRef]
- Dong, Y.; Chertopalov, S.; Maleski, K.; Anasori, B.; Hu, L.; Bhattacharya, S.; Rao, A.M.; Gogotsi, Y.; Mochalin, V.N.; Podila, R. Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes. Adv. Mater. 2018, 30, 1705714. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Liu, R.T.; Huang, C.; Huang, Y.F.; Gao, L.F.; Sun, B.; Huang, Z.P.; Zhang, L.; Hu, C.X.; Zhang, Z.Q.; et al. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale 2018, 10, 21106–21115. [Google Scholar] [CrossRef]
- Song, Y.; Liang, Z.; Jiang, X.; Chen, Y.; Li, Z.; Lu, L.; Ge, Y.; Wang, K.; Zheng, J.; Lu, S.; et al. Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 2017, 4, 045010. [Google Scholar] [CrossRef]
- Jiang, T.; Yin, K.; Wang, C.; You, J.; Ouyang, H.; Miao, R.; Zhang, C.; Wei, K.; Li, H.; Chen, H.; et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect. Photonics Res. 2020, 8, 78–90. [Google Scholar] [CrossRef]
- Kobtsev, S.; Ivanenko, A.; Gladush, Y.G.; Nyushkov, B.; Kokhanovskiy, A.; Anisimov, A.S.; Nasibulin, A.G. Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film. Opt. Express 2016, 24, 28768–28773. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, C.; Rong, X.; Wu, J.; Xu, H.; Wang, F.; Luo, Z.; Cai, Z. Bidirectional Red-Light Passively Q-Switched All-Fiber Ring Lasers With Carbon Nanotube Saturable Absorber. J. Light. Technol. 2018, 36, 2694–2701. [Google Scholar] [CrossRef]
- Hasan, T.; Sun, Z.; Tan, P.; Popa, D.; Flahaut, E.; Kelleher, E.J.R.; Bonaccorso, F.; Wang, F.; Jiang, Z.; Torrisi, F.; et al. Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano 2014, 8, 4836–4847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivistö, S.; Hakulinen, T.; Kaskela, A.; Aitchison, B.; Brown, D.P.; Nasibulin, A.G.; Kauppinen, E.I.; Härkönen, A.; Okhotnikov, O.G. Carbon nanotube films for ultrafast broadband technology. Opt. Express 2009, 17, 2358–2363. [Google Scholar] [CrossRef] [Green Version]
- Chamorovskiy, A.; Marakulin, A.; Ranta, S.; Tavast, M.; Rautiainen, J.; Leinonen, T.; Kurkov, A.; Okhotnikov, O. Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser. Opt. Lett. 2012, 37, 1448. [Google Scholar] [CrossRef]
- Wei, C.; Lyu, Y.; Li, Q.; Kang, Z.; Zhang, H.; Qin, G.; Li, H.; Liu, Y. Wideband Tunable, Carbon Nanotube Mode-Locked Fiber Laser Emitting at Wavelengths Around 3 µm. IEEE Photonics Technol. Lett. 2019, 31, 869–872. [Google Scholar] [CrossRef]
- Lü, Y.; Wei, C.; Zhang, H.; Kang, Z.; Qin, G.; Liu, Y. Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber. Photonics Res. 2019, 7, 14–18. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Y.; Xu, Y.; Wang, F. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range. Sci. Rep. 2017, 7, 45109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.; Choi, S.Y.; Rotermund, F.; Cha, Y.H.; Jeong, D.Y.; Yeom, D.I. All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber. Opt. Express 2014, 22, 22667–22672. [Google Scholar] [CrossRef]
- Wang, J.; Cai, Z.; Xu, P.; Du, G.; Wang, F.; Ruan, S.; Sun, Z.; Hasan, T. Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion. Opt. Express 2015, 23, 9947–9958. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Dużyńska, A.; Zdrojek, M.; Sotor, J. Metallic carbon nanotube-based saturable absorbers for holmium-doped fiber lasers. Opt. Express 2019, 27, 11361–11369. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Yamashita, S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Opt. Express 2011, 19, 6155–6163. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Rivier, S.; Steinmeyer, G.; Yim, J.H.; Cho, W.B.; Lee, S.; Rotermund, F.; Pujol, M.C.; Mateos, X.; Aguiló, M.; et al. Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. Opt. Lett. 2008, 33, 729–731. [Google Scholar] [CrossRef]
- Schmidt, A.; Koopmann, P.; Huber, G.; Fuhrberg, P.; Choi, S.Y.; Yeom, D.I.; Rotermund, F.; Petrov, V.; Griebner, U. 175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes. Opt. Express 2012, 20, 5313–5318. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, Z.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.B.; Hebard, A.F.; et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef]
- Duzynska, A.; Swiniarski, M.; Wroblewska, A.; Lapinska, A.; Zeranska, K.; Judek, J.; Zdrojek, M. Phonon properties in different types of single-walled carbon nanotube thin films probed by Raman spectroscopy. Carbon 2016, 105, 377–386. [Google Scholar] [CrossRef]
- Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes: Basic Concepts and Physical Properties; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Soboń, G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: Graphene and topological insulators [Invited]. Photonics Res. 2015, 3, A56. [Google Scholar] [CrossRef]
- Kurtner, F.X.; Au, J.A.d.; Keller, U. Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. Quantum Electron. 1998, 4, 159–168. [Google Scholar] [CrossRef] [Green Version]
Dopant | Er | Tm | Ho |
Fiber type | OFS | Nufern | iXblue |
EDF80 | SM-TSF-5/125 | IXF-HDF-8-125 | |
Fiber length | 30 cm | 17 cm | 194 cm |
Output coupling ratio | 10% | 10% | 30% |
Pump wavelength | 980 nm | 1565 nm | 1940 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawliszewska, M.; Tomaszewska, D.; Soboń, G.; Dużyńska, A.; Zdrojek, M.; Sotor, J. Broadband Metallic Carbon Nanotube Saturable Absorber for Ultrashort Pulse Generation in the 1500–2100 nm Spectral Range. Appl. Sci. 2021, 11, 3121. https://doi.org/10.3390/app11073121
Pawliszewska M, Tomaszewska D, Soboń G, Dużyńska A, Zdrojek M, Sotor J. Broadband Metallic Carbon Nanotube Saturable Absorber for Ultrashort Pulse Generation in the 1500–2100 nm Spectral Range. Applied Sciences. 2021; 11(7):3121. https://doi.org/10.3390/app11073121
Chicago/Turabian StylePawliszewska, Maria, Dorota Tomaszewska, Grzegorz Soboń, Anna Dużyńska, Mariusz Zdrojek, and Jarosław Sotor. 2021. "Broadband Metallic Carbon Nanotube Saturable Absorber for Ultrashort Pulse Generation in the 1500–2100 nm Spectral Range" Applied Sciences 11, no. 7: 3121. https://doi.org/10.3390/app11073121
APA StylePawliszewska, M., Tomaszewska, D., Soboń, G., Dużyńska, A., Zdrojek, M., & Sotor, J. (2021). Broadband Metallic Carbon Nanotube Saturable Absorber for Ultrashort Pulse Generation in the 1500–2100 nm Spectral Range. Applied Sciences, 11(7), 3121. https://doi.org/10.3390/app11073121