Numerical Modelling and Optimization of Two-Dimensional Phononic Band Gaps in Elastic Metamaterials with Square Inclusions
Abstract
:1. Introduction
2. Numerical Methods
3. Results and Discussions
3.1. Elastic Composites with Square Inclusions and Epoxy Host
- i.
- Single-square inclusion/epoxy host with different Young’s moduli.
- ii.
- Increasing number of square inclusions within a unit cell.
- iii.
- Eigenmode analysis.
3.2. Effect of Rotation Angle of Square Inclusions
3.3. Effect of Size of Square Inclusions
3.4. Effect of Arrangement of Square Inclusions
3.5. Transmission Loss in Elastic Metamaterial
4. Conclusions
- increasing the number of inclusions within the periodic unit cell to increase the bandwidth and cause a blue shift in the central bandgap frequency;
- increasing the filling fraction of the unit cell to increase the bandwidth, and maximum bandwidth is reached near FF = 0.6 when using a tungsten-carbide/epoxy phononic crystal;
- rotating the angle of inclusions causes a minor effect on the bandwidth of the bandgap, except when the spacing among inclusions is reduced to near or less than the vibration wavelength;
- inclusion with a graded size leads to lower bandwidth, as compared to that of equally sized inclusions in a phononic crystal;
- a narrow spacing between the inclusions drastically reduces the bandwidth and UBF, and this can be found in the study of the rotation and arrangement effect;
- simulate transmission spectra is a way to verify the near-zero transmittance of the proposed elastic metamaterials over the frequency range within the phononic bandgap.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ρ | density of the elastic material |
u | deformation of the elastic material |
fv | force per deformed volume |
E | elastic modulus |
N | Poisson’s ratio |
∇ | vector differential operator |
k | periodicity k-vector; Bloch wave vector |
Λ | spatial period in periodic directions |
ao | length of the unit cell |
ai | side length of the square inclusion |
FF | filling fraction (ai)2/(ao)2 |
YMR | Young’s modulus ratio |
LBF | lower bound frequency |
UBF | upper bound frequency |
Special k points in the irreducible Brillouin zone | |
Γ | (0, 0) |
M | (2π/ao, 2π/ao) |
X | (2π/ao, 0) |
Appendix A
References
- Wu, Y.; Lai, Y.; Zhang, Z.-Q. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density. Phys. Rev. Lett. 2011, 107, 105506. [Google Scholar] [CrossRef]
- Srivastava, A. Elastic metamaterials and dynamic homogenization: A review. Int. J. Smart Nano Mater. 2015, 6, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang, B.; Bai, Y.; Wang, L.; Rejab, M.R.M. Review of Phononic crystals and acoustic metamaterials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 788, 788. [Google Scholar] [CrossRef]
- Krushynska, A.; Miniaci, M.; Bosia, F.; Pugno, N. Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials. Extreme Mech. Lett. 2017, 12, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Yong, W.; Qibai, H.; Minggang, Z.; Zhanxin, L. A new approach of vibration isolation analysis of periodic composite structure based on phononic crystal. Int. J. Mech. Mater. Des. 2007, 3, 103–109. [Google Scholar] [CrossRef]
- Matlack, K.H.; Bauhofer, A.; Krödel, S.; Palermo, A.; Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl. Acad. Sci. USA 2016, 113, 8386–8390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Hu, H.; Laude, V. Low-frequency band gap in cross-like holey phononic crystal strip. J. Phys. D Appl. Phys. 2017, 51, 045601. [Google Scholar] [CrossRef] [Green Version]
- Bilal, O.R.; Ballagi, D.; Daraio, C. Architected Lattices for Simultaneous Broadband Attenuation of Airborne Sound and Mechanical Vibrations in All Directions. Phys. Rev. Appl. 2018, 10, 054060. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Peng, H.; Zhang, S.; Zhang, H.; Chen, B. Design of nacreous composite material for vibration isolation based on band gap manipulation. Comput. Mater. Sci. 2015, 102, 126–134. [Google Scholar] [CrossRef]
- Park, C.-S.; Shin, Y.C.; Jo, S.-H.; Yoon, H.; Choi, W.; Youn, B.D.; Kim, M. Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting. Nano Energy 2019, 57, 327–337. [Google Scholar] [CrossRef]
- Gonella, S.; To, A.C.; Liu, W.K. Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 2009, 57, 621–633. [Google Scholar] [CrossRef]
- Lv, H.; Tian, X.; Wang, M.Y.; Li, D. Vibration energy harvesting using a phononic crystal with point defect states. Appl. Phys. Lett. 2013, 102, 034103. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Wu, J.H.; Zhang, S.; Liu, Z.; Li, J. Low-frequency vibration energy harvesting using a locally resonant phononic crystal plate with spiral beams. Mod. Phys. Lett. B 2015, 29, 1450259. [Google Scholar] [CrossRef]
- Kafesaki, M.; Sigalas, M.M.; García, N. Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials. Phys. Rev. Lett. 2000, 85, 4044–4047. [Google Scholar] [CrossRef] [Green Version]
- Khelif, A.; Djafari-Rouhani, B.; Vasseur, J.O.; Deymier, P.A. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Phys. Rev. B 2003, 68, 024302. [Google Scholar] [CrossRef] [Green Version]
- Pennec, Y.; Djafari-Rouhani, B.; Vasseur, J.O.; Khelif, A.; Deymier, P.A. Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Phys. Rev. E 2004, 69, 046608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; To, A.C. Broadband wave filtering of bioinspired hierarchical phononic crystal. Appl. Phys. Lett. 2013, 102, 121910. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Hu, G. Elastic metamaterials with local resonances: An overview. Theor. Appl. Mech. Lett. 2012, 2, 041001. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Shi, Z. Novel composite periodic structures with attenuation zones. Eng. Struct. 2013, 56, 1271–1282. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Wang, Y.-S. Multiple wide complete bandgaps of two-dimensional phononic crystal slabs with cross-like holes. J. Sound Vib. 2013, 332, 2019–2037. [Google Scholar] [CrossRef]
- Mizukami, K.; Kawaguchi, T.; Ogi, K.; Koga, Y. Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration. Compos. Struct. 2021, 255, 112949. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Wang, Y.-S.; Wang, L. Two-dimensional ternary locally resonant phononic crystals with a comblike coating. J. Phys. D Appl. Phys. 2013, 47, 15502. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Sheng, M.-P.; Qin, Q.-H. Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions. Chin. Phys. B 2016, 25, 046301. [Google Scholar] [CrossRef]
- Huang, J.; Shi, Z.; Huang, W. Multiple band gaps of phononic crystals with quasi-Sierpinski carpet unit cells. Phys. B Condens. Matter 2017, 516, 48–54. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Liang, T. Band structures in Sierpinski triangle fractal porous phononic crystals. Phys. B Condens. Matter 2016, 498, 33–42. [Google Scholar] [CrossRef]
- Goffaux, C.; Vigneron, J.P. Theoretical study of a tunable phononic band gap system. Phys. Rev. B 2001, 64, 075118. [Google Scholar] [CrossRef]
- Zhou, X.-Z.; Wang, Y.-S.; Zhang, C. Elastic band gaps of two-dimensional phononic crystals tunned by material parameters. 2009 IEEE Int. Ultrason. Symp. 2009, 1020–1023. [Google Scholar] [CrossRef]
- Hussein, M.I.; Hamza, K.; Hulbert, G.M.; Saitou, K. Optimal synthesis of 2D phononic crystals for broadband frequency isolation. Waves Random Complex Media 2007, 17, 491–510. [Google Scholar] [CrossRef]
- Li, E.; He, Z.; Wang, G.; Jong, Y. Fundamental study of mechanism of band gap in fluid and solid/fluid phononic crystals. Adv. Eng. Softw. 2018, 121, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Su, X.-X.; Wang, Y.-F.; Wang, Y.-S. Effects of Poisson’s ratio on the band gaps and defect states in two-dimensional vacuum/solid porous phononic crystals. Ultrasonics 2012, 52, 255–265. [Google Scholar] [CrossRef]
- Huang, H.; Sun, C. Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young’s modulus. J. Mech. Phys. Solids 2011, 59, 2070–2081. [Google Scholar] [CrossRef]
- Athith, D.; Sanjay, M.R.; Yashas Gowda, T.G.; Madhu, P.; Arpitha, G.R.; Yogesha, B.; Omri, M.A. Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. J. Ind. Text. 2017, 48, 713–737. [Google Scholar] [CrossRef]
- Duranteau, M.; Valier-Brasier, T.; Conoir, J.-M.; Wunenburger, R. Random acoustic metamaterial with a subwavelength dipolar resonance. J. Acoust. Soc. Am. 2016, 139, 3341–3352. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Guest, J.K.; Srivastava, A. 3-D phononic crystals with ultra-wide band gaps. Sci. Rep. 2017, 7, srep43407. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Meng, F.; Li, Y.F.; Huang, X. Topological design of 3D phononic crystals for ultra-wide omnidirectional bandgaps. Struct. Multidiscip. Optim. 2019, 60, 2405–2415. [Google Scholar] [CrossRef]
- COMSOL Inc. COMSOL Multiphysics Reference Manual, Version 5.5; COMSOL Inc. Available online: https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf (accessed on 31 March 2021).
- Hastings, F.D.; Schneider, J.B.; Broschat, S.L. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am. 1996, 100, 3061–3069. [Google Scholar] [CrossRef]
- Krushynska, A.A.; Kouznetsova, V.V.; Geers, M.M. Towards optimal design of locally resonant acoustic metamaterials. J. Mech. Phys. Solids 2014, 71, 179–196. [Google Scholar] [CrossRef]
- Oudich, M.; Li, Y.; Assouar, B.M.; Hou, Z. A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 2010, 12, 83049. [Google Scholar] [CrossRef]
- Cai, C.; Wang, Z.; Li, Q.; Xu, Z.; Tian, X. Pentamode metamaterials with asymmetric double-cone elements. J. Phys. D Appl. Phys. 2015, 48, 175103. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Maznev, A.A.; Laude, V. Formation of Bragg Band Gaps in Anisotropic Phononic Crystals Analyzed with the Empty Lattice Model. Crystals 2016, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, M.S. Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Appl. Phys. Lett. 1997, 70, 3218–3220. [Google Scholar] [CrossRef]
Material/Property | Elastic Modulus E (GPa) | Density ρ (kg/m3) | Poisson’s Ratio ν |
---|---|---|---|
Epoxy | 4.344 | 1180 | 0.3679 |
Tungsten Carbide | 387.6 | 13,800 | 0.3459 |
# | FF | ai1 | ai2 |
---|---|---|---|
1 | 0.1 | 0.1 | 0.2 |
2 | 0.2 | 0.15 | 0.2783 |
3 | 0.3 | 0.2 | 0.3316 |
4 | 0.4 | 0.25 | 0.3708 |
5 | 0.5 | 0.3 | 0.4 |
# | FF | ai1 | ai2 |
---|---|---|---|
1 | 0.105 | 0.05 | 0.1 |
2 | 0.2175 | 0.1 | 0.15 |
3 | 0.375 | 0.15 | 0.2 |
4 | 0.5775 | 0.2 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhammadi, A.; Lu, J.-Y.; Almheiri, M.; Alzaabi, F.; Matouk, Z.; Al Teneiji, M.; Al-Rub, R.K.A.; Giannini, V.; Lee, D.-W. Numerical Modelling and Optimization of Two-Dimensional Phononic Band Gaps in Elastic Metamaterials with Square Inclusions. Appl. Sci. 2021, 11, 3124. https://doi.org/10.3390/app11073124
Alhammadi A, Lu J-Y, Almheiri M, Alzaabi F, Matouk Z, Al Teneiji M, Al-Rub RKA, Giannini V, Lee D-W. Numerical Modelling and Optimization of Two-Dimensional Phononic Band Gaps in Elastic Metamaterials with Square Inclusions. Applied Sciences. 2021; 11(7):3124. https://doi.org/10.3390/app11073124
Chicago/Turabian StyleAlhammadi, Alya, Jin-You Lu, Mahra Almheiri, Fatima Alzaabi, Zineb Matouk, Mohamed Al Teneiji, Rashid K. Abu Al-Rub, Vincenzo Giannini, and Dong-Wook Lee. 2021. "Numerical Modelling and Optimization of Two-Dimensional Phononic Band Gaps in Elastic Metamaterials with Square Inclusions" Applied Sciences 11, no. 7: 3124. https://doi.org/10.3390/app11073124
APA StyleAlhammadi, A., Lu, J. -Y., Almheiri, M., Alzaabi, F., Matouk, Z., Al Teneiji, M., Al-Rub, R. K. A., Giannini, V., & Lee, D. -W. (2021). Numerical Modelling and Optimization of Two-Dimensional Phononic Band Gaps in Elastic Metamaterials with Square Inclusions. Applied Sciences, 11(7), 3124. https://doi.org/10.3390/app11073124