Maize and Sorghum as Raw Materials for Brewing, a Review
Abstract
:1. Introduction Cross-Reference
2. Maize and Sorghum: Raw Materials for Brewing
2.1. Overview
2.2. Chemical Structure and Composition
2.3. The Use in Brewing
2.3.1. Maize
2.3.2. Sorghum
2.4. Other Uses
3. Perspectives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fox, G. The brewing industry and the opportunities for real-time quality analysis using infrared spectroscopy. Appl. Sci. 2020, 10, 616. [Google Scholar] [CrossRef] [Green Version]
- Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Gluten reduction in beer by hydrodynamic cavitation assisted brewing of barley malts. LWT 2017, 82, 342–353. [Google Scholar] [CrossRef]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.D.C.; Padilha, F.F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- Rošul, M.Đ.; Mandić, A.I.; Mišan, A.Č.; Đerić, N.R.; Pejin, J.D. Review of trends in formulation of functional beer. Food Feed. Res. 2019, 46, 23–35. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Pre-treatments used for the recovery of brewer’s spent grain-a minireview. J. Agroaliment. Process. Technol. 2020, 26, 304–312. [Google Scholar]
- Habschied, K.; Živković, A.; Krstanović, V.; Mastanjević, K. Functional beer—A review on possibilities. Beverages 2020, 6, 51. [Google Scholar] [CrossRef]
- Cela, N.; Condelli, N.; Caruso, M.C.; Perretti, G.; Di Cairano, M.; Tolve, R.; Galgano, F. Gluten-free brewing: Issues and perspectives. Fermentation 2020, 6, 53. [Google Scholar] [CrossRef]
- Flores-Calderón, A.M.D.; Luna, H.; Escalona-Buendía, H.B.; Verde-Calvo, J.R. Chemical characterization and antioxidant capacity in blue corn (Zea mays L.) malt beers. J. Inst. Brew. 2017, 123, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Donadini, G.; Fumi, M.D.; Kordialik-Bogacka, E.; Maggi, L.; Lambri, M.; Sckokai, P. Consumer interest in specialty beers in three European markets. Food Res. Int. 2016, 85, 301–314. [Google Scholar] [CrossRef]
- Betancur, M.I.; Motoki, K.; Spence, C.; Velasco, C. Factors influencing the choice of beer: A review. Food Res. Int. 2020, 109367. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s spent grains: Possibilities of valorization, a review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, H.; Yang, Z.; Wang, Y.; Li, H. Black rice addition prompted the beer quality by the extrusion as pretreatment. Food Sci. Nutr. 2019, 7, 3664–3674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evera, E.; Abedin Abdallah, S.H.; Shuang, Z.; Sainan, W.; Yu, H. Shelf life and nutritional quality of sorghum beer: Potentials of phytogenic-based extracts. J. Agric. Food. Technol. 2019, 9, 1–14. [Google Scholar]
- Chaves-López, C.; Rossi, C.; Maggio, F.; Paparella, A.; Serio, A. Changes occurring in spontaneous maize fermentation: An overview. Fermentation 2020, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Rocha dos Santos Mathias, T.; Moreira Menezes, L.; Camporese Sérvulo, E.F. Effect of maize as adjunct and the mashing proteolytic step on the brewer wort composition. Beverages 2019, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Bogdan, P.; Kordialik-Bogacka, E. Alternatives to malt in brewing. Trends Food Sci. Technol. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Hernández-Becerra, E.; Contreras-Jiménez, B.; Vuelvas-Solorzano, A.; Millan-Malo, B.; Muñoz-Torres, C.; Oseguera-Toledo, M.E.; Rodriguez-Garcia, M.E. Physicochemical and morphological changes in corn grains and starch during the malting for Palomero and Puma varieties. Cereal Chem. 2020, 97, 404–415. [Google Scholar] [CrossRef]
- Dabija, A. Biotehnologies in the Food Industries; Performantica Press: Iasi, Romania, 2019. [Google Scholar]
- Puligundla, P.; Smogrovicova, D.; Mok, C.; Obulam, V.S.R. Recent developments in high gravity beer-brewing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102399. [Google Scholar] [CrossRef]
- Goode, D.L.; Arendt, E.K. Developments in the supply of adjunct materials for brewing. In Brewing; Woodhead Publishing: Cambridge, UK, 2006; pp. 30–67. [Google Scholar]
- Schnitzenbaumer, B.; Arendt, E.K. Brewing with up to 40% unmalted oats (Avena sativa) and sorghum (Sorghum bicolor): A review. J. Inst. Brew. 2014, 120, 315–330. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Cao, Y.; Chen, S.; Ma, C.; Zhang, D.; Li, H. Analysis of flavour compounds in beer with extruded corn starch as an adjunct. J. Inst. Brew. 2018, 124, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Mellor, D.D.; Hanna-Khalil, B.; Carson, R. A review of the potential health benefits of low alcohol and alcohol-free beer: Effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages 2020, 6, 25. [Google Scholar] [CrossRef]
- Donadini, G.; Porretta, S. Uncovering patterns of consumers’ interest for beer: A case study with craft beers. Food Res. Int. 2017, 91, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.R.; Thomas Lane, E.; Styles, D. Crafty Marketing: An Evaluation of Distinctive Criteria for “Craft” Beer. Food Rev. Int. 2020, 1–17. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Zhao, H. Non-alcoholic and craft beer production and challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Kerpes, R.; Fischer, S.; Becker, T. The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends Food Sci. Technol. 2017, 67, 129–138. [Google Scholar] [CrossRef]
- Ciocan, M.; Dabija, A.; Codină, G.G. Effect of some unconventional ingredients on the production of black beer. Ukr. Food J. 2020, 9, 322–331. [Google Scholar] [CrossRef]
- Gumienna, M.; Górna, B. Gluten hypersensitivities and their impact on the production of gluten-free beer. Eur. Food Res. Technol. 2020, 247, 2147–2160. [Google Scholar] [CrossRef]
- Adiamo, O.Q.; Fawale, O.S.; Olawoye, B. Recent trends in the formulation of gluten-free sorghum products. J. Culin. Sci. Technol. 2018, 16, 311–325. [Google Scholar] [CrossRef]
- Dlamini, B.C.; Taylor, J.R.N.; Buys, E.M. Influence of ammonia and lysine supplementation on yeast growth and fermentation with respect to gluten-free type brewing using unmalted sorghum grain. Int. J. Food Sci. Technol. 2020, 55, 841–850. [Google Scholar] [CrossRef]
- Yorke, J.; Cook, D.; Ford, R. Brewing with Unmalted Cereal Adjuncts: Sensory and Analytical Impacts on Beer Quality. Beverages 2021, 7, 4. [Google Scholar] [CrossRef]
- Ambra, R.; Pastore, G.; Lucchetti, S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef] [PubMed]
- Adiaha, M.S.; Agba, O.A.; Attoe, E.E.; Ojikpong, T.O.; Kekong, M.A.; Obio, A.; Undie, U.L. Effect of maize (Zea mays L.) on human development and the future of man-maize survival: A review. World Sci. News 2016, 59, 52–62. [Google Scholar]
- Steiner, E.; Auer, A.; Becker, T.; Gastl, M. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material. J. Sci. Food Agric. 2012, 92, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Szambelan, K.; Nowak, J.; Szwengiel, A.; Jeleń, H. Comparison of sorghum and maize raw distillates: Factors affecting ethanol efficiency and volatile by-product profile. J. Cereal Sci. 2020, 91, 102863. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Batsatsashvili, K.; Kikvidze, Z.; Ghorbani, A.; Paniagua-Zambrana, N.Y.; Khutsishvili, M.; Tchelidze, D. Ethnobotany of Mountain Regions: Far Eastern Europe. Ethnobot. Mt. Reg. Far East. Eur. Ural North. Cauc. Turk. Iran 2020, 3–43. [Google Scholar] [CrossRef]
- Malhotra, S.K. Diversification in Utilization of Maize and Production. Dep. Agric. Co-Oper. Farmers Welf. Minist. Agric. Farmers Welf. Gov. India A Compend. 2017, 5, 49–57. [Google Scholar]
- Singh, N.; Singh, S.; Shevkani, K. Maize: Composition, bioactive constituents, and unleavened bread. In Flour and Breads and Their Fortification in Health and Disease Prevention; Academic Press: London, UK, 2019; pp. 111–121. [Google Scholar]
- Shah, T.R.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar]
- Eshetie, T. Review of quality protein maize as food and feed: In alleviating protein deficiency in developing countries. Am. J. Food Nutr. 2017, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Abah, C.R.; Ishiwu, C.N.; Obiegbuna, J.E.; Oladejo, A.A. Sorghum Grains: Nutritional Composition, Functional Properties and Its Food Applications. Eur. J. Nutr. Food Saf. 2020, 5, 101–111. [Google Scholar] [CrossRef]
- Adebo, O.A. African sorghum-based fermented foods: Past, current and future prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef]
- FAOSTAT Food and Agriculture Organization Statistics. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 February 2021).
- Nnamchi, C.I.; Okolo, B.N.; Moneke, A.N. Grain and malt quality properties of some improved Nigerian sorghum varieties. J. Inst. Brew. 2014, 120, 353–359. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreta, M.; Ramos, J.; Tivano, J.C.; Vegetti, A. Descriptive characters of growth form in Poaceae—An overview. Flora 2011, 206, 283–293. [Google Scholar] [CrossRef]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for Brewing: Characteristic Changes during Malting, Brewing and Applications of its By-Products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, S.A. Description, development, structure, and composition of the corn kernel. In Corn: Chemistry and Technology, 2nd ed.; White, P.J., Johnson, L.A., Eds.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 2003; pp. 69–106. [Google Scholar]
- Dicko, M.H.; Gruppen, H.; Traoré, A.S.; Voragen, A.G.; Van Berkel, W.J. Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395. [Google Scholar]
- Fox, G.P. Chemical composition in barley grains and malt quality. In Genetics and Improvement of Barley Malt Quality; Zhang, G., Li, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 64–99. [Google Scholar]
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Šterna, V.; Zute, S.; Jākobsone, I. Grain composition and functional ingredients of barley varieties created in Latvia. In Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences; Sciendo, 2015; Volume 69, pp. 158–162. [Google Scholar]
- Le, T.A.T. Maize Malt Supplementation of Barley for the New Beer Production. Ph.D. Thesis, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 2017. [Google Scholar]
- Fišteš, A.; Došenovic, T.; Rakic, D.; Pajin, B.; Šereš, Z.; Simovic, Š.; Loncarevic, I. Statistical analysis of the basic chemical composition of whole grain flour of different cereal grains. Acta Univ. Sapientiae Aliment. 2014, 7, 45–53. [Google Scholar]
- Alijošius, S.; Švirmickas, G.J.; Kliševičiūtė, V.; Gružauskas, R.; Šašytė, V.; Racevičiūtė-Stupelienė, A.; Dailidavičienė, J. The chemical composition of different barley varieties grown in Lithuania. Vet. Zootech. 2016, 73, 9–13. [Google Scholar]
- Andersson, A.A.; Elfverson, C.; Andersson, R.; Regnér, S.; Åman, P. Chemical and physical characteristics of different barley samples. J. Sci. Food Agric. 1999, 79, 979–986. [Google Scholar] [CrossRef]
- Ndife, J.; Nwokedi, C.U.; Ugwuona, F.U. Optimization of malting and saccharification in the production of malt beverage from maize. Niger. J. Agric. Food Environ. 2019, 15, 134–141. [Google Scholar]
- Ignjatovic-Micic, D.; Vancetovic, J.; Trbovic, D.; Dumanovic, Z.; Kostadinovic, M.; Bozinovic, S. Grain nutrient composition of maize (Zea mays L.) drought-tolerant populations. J. Agric. Food Chem. 2015, 63, 1251–1260. [Google Scholar] [CrossRef]
- Available online: http://www.fao.org/3/T0395E/T0395E03.htm (accessed on 1 March 2021).
- Udachan, I.S.; Sahu, A.K.; Hend, F.M. Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. Int. Food Res. J. 2012, 19, 315–319. [Google Scholar]
- Singh, E.; Jain, P.K.; Sharma, S. Effect of different household processing on nutritional and anti-nutritional factors in Vigna aconitifolia and Sorghum bicolour (L.) Moench seeds and their product development. J. Med. Nutr. Nutraceut. 2015, 4, 95. [Google Scholar]
- Mohapatra, D.; Patel, A.S.; Kar, A.; Deshpande, S.S.; Tripathi, M.K. Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chem. 2019, 271, 129–135. [Google Scholar] [CrossRef]
- Nghiem, N.P.; Montanti, J.; Johnston, D.B. Sorghum as a renewable feedstock for production of fuels and industrial chemicals. Bioengineering 2016, 3, 75–91. [Google Scholar] [CrossRef]
- Vilela, J.D.A.S.; de Figueiredo Vilela, L.; Ramos, C.L.; Schwan, R.F. Physiological and genetic characterization of indigenous Saccharomyces cerevisiae for potential use in productions of fermented maize-based-beverages. Braz. J. Microbiol. 2020, 51, 1297–1307. [Google Scholar] [CrossRef]
- Piacentini, K.C.; Rocha, L.O.; Savi, G.D.; Carnielli-Queiroz, L.; Corrêa, B. Beer industry in Brazil: Economic aspects, characteristics of the raw material and concerns. Kvas. Prum. 2018, 64, 284–286. [Google Scholar] [CrossRef]
- Estevão, S.T.; e Silva, J.B.D.A.; Lourenço, F.R. Development and optimization of beer containing malted and non-malted substitutes using quality by design (QbD) approach. J. Food Eng. 2021, 289, 110182. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, T.; Mei, Y.; Li, Q. Enhancing the hydrolysis of corn starch using optimal amylases in a high-adjunct-ratio malt mashing process. Food Sci. Biotechnol. 2017, 26, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Poreda, A.; Czarnik, A.; Zdaniewicz, M.; Jakubowski, M.; Antkiewicz, P. Corn grist adjunct–application and influence on the brewing process and beer quality. J. Inst. Brew. 2014, 120, 77–81. [Google Scholar] [CrossRef]
- Diakabana, P.; Mvoula-Tsiéri, M.; Dhellot, J.; Kobawila, S.C.; Louembé, D. Physico-chemical characterization of brew during the brewing corn malt in the production of maize beer in Congo. Adv. J. Food Sci. Technol. 2013, 5, 671–677. [Google Scholar] [CrossRef]
- Fumi, M.D.; Galli, R.; Lambri, M.; Donadini, G.; De Faveri, D.M. Effect of full–scale brewing process on polyphenols in Italian allzmalt and maize adjunct lager beers. J. Food Compos. Anal. 2011, 4–5, 568–573. [Google Scholar] [CrossRef]
- Fumi, M.D.; Galli, R.; Lambri, M.; Donadini, G.; Faveri, D.M.D. Impact of full-scale brewing processes on lager beer nitrogen compounds. Eur. Food Res. Technol. 2009, 230, 209–216. [Google Scholar] [CrossRef]
- Perez-Carrillo, E.; Serna-Saldivar, S.O.; Chuck-Hernandez, C.; Cortes-Callejas, M.L. Addition of protease during starch liquefaction affects free amino nitrogen, fusel alcohols and ethanol production of fermented maize and whole and decorticated sorghum mashes. Biochem. Eng. J. 2012, 67, 1–9. [Google Scholar] [CrossRef]
- Zweytik, G.; Berghofer, E. Production of gluten-free beer. In Gluten-Free Food Science and Technology; Gallagher, E., Ed.; Wiley-Blackwell: Oxford, UK, 2009. [Google Scholar]
- Romero-Medina, A.; Estarrón-Espinosa, M.; Verde-Calvo, J.R.; Lelièvre-Desmas, M.; Escalona-Buendía, H.B. Renewing traditions: A sensory and chemical characterisation of mexican pigmented corn beers. Foods 2020, 9, 886. [Google Scholar] [CrossRef]
- Bernal-Gil, N.Y.; Favila-Cisneros, H.J.; Zaragoza-Alonso, J.; Cuffia, F.; Rojas-Rivas, E. Using projective techniques and Food Neophobia Scale to explore the perception of traditional ethnic foods in Central Mexico: A preliminary study on the beverage Sende. J. Sens. Stud. 2020, 35, e12606. [Google Scholar] [CrossRef]
- Bassi, D.; Orrù, L.; Cabanillas Vasquez, J.; Cocconcelli, P.S.; Fontana, C. Peruvian chicha: A focus on the microbial populations of this ancient Maize-based fermented beverage. Microorganisms 2020, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.R.; Nash, D.J.; Henkin, J.M.; Armitage, R.A. Archaeometric Approaches to Defining Sustainable Governance: Wari Brewing Traditions and the Building of Political Relationships in Ancient Peru. Sustainability 2019, 11, 2333. [Google Scholar] [CrossRef] [Green Version]
- Adekoya, I.; Obadina, A.; Adaku, C.C.; De Boevre, M.; Okoth, S.; De Saeger, S.; Njobeh, P. Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. Int. J. Food Microbiol. 2018, 270, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Hlangwani, E.; Adebiyi, J.A.; Doorsamy, W.; Adebo, O.A. Processing, Characteristics and Composition of Umqombothi (a South African Traditional Beer). Processes 2020, 8, 1451. [Google Scholar] [CrossRef]
- Cason, E.D.; Mahlomaholo, B.J.; Taole, M.M.; Abong, G.O.; Vermeulen, J.G.; De Smidt, O.; Viljoen, B. Bacterial and fungal dynamics during the fermentation process of sesotho, a traditional beer of Southern Africa. Front. Microbiol. 2020, 11, 1451. [Google Scholar] [CrossRef]
- Gadaga, T.H.; Lehohla, M.; Ntuli, V. Traditional fermented foods of Lesotho. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 2387–2391. [Google Scholar]
- Mawonike, R.; Chigunyeni, B.; Chipumuro, M. Process improvement of opaque beer (chibuku) based on multivariate cumulative sum control chart. J. Inst. Brew. 2018, 124, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Konfo, C.T.R.; Chabi, N.W.; Dahouenon-Ahoussi, E.; Cakpo-Chichi, M.; Soumanou, M.M.; Sohounhloue, D.C.K. Improvement of African traditional sorghum beers quality and potential applications of plants extracts for their stabilization: A review. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Andualem, B.; Gessesse, A. Isolation and identification of amylase producing yeasts in ‘tella’ (Ethiopian local beer) and their amylase contribution for ‘tella’production. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 30–34. [Google Scholar]
- Fentie, E.G.; Emire, S.A.; Demsash, H.D.; Dadi, D.W.; Shin, J.-H. Cereal- and Fruit-Based Ethiopian Traditional Fermented Alcoholic Beverages. Foods 2020, 9, 1781. [Google Scholar] [CrossRef] [PubMed]
- Adesulu-Dahunsi, A.T.; Dahunsi, S.O.; Olayanju, A. Synergistic microbial interactions between lactic acid bacteria and yeasts during production of Nigerian indigenous fermented foods and beverages. Food Control 2020, 110, 106963. [Google Scholar] [CrossRef] [Green Version]
- Krstanović, V.; Habschied, K.; Lukinac, J.; Jukić, M.; Mastanjević, K. The Influence of Partial Substitution of Malt with Unmalted Wheat in Grist on Quality Parameters of Lager Beer. Beverages 2020, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Obatolu, V.A.; Adeniyi, P.O.; Ashaye, O.A. Nutritional, Sensory and Storage Quality of Sekete from Zea mays. Int. J. Food Sci. Nutr. 2016, 6, 73–80. [Google Scholar]
- Agu, R.C.A. comparison of maize, sorghum and barley as brewing adjuncts. J. Inst. Brew. 2002, 108, 19–22. [Google Scholar] [CrossRef]
- Goode, D.L.; Arendt, E.K. Pilot Scale Production of a Lager Beer from a Grist Containing 50% Unmalted Sorghum. J. Inst. Brew. 2003, 109, 208–217. [Google Scholar] [CrossRef]
- Ogbonna, A.C. Current Developments in Malting and Brewing Trials with Sorghum in Nigeria: A Review. J. Inst. Brew. 2011, 117, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Beta, T.; Rooney, L.W.; Waniska, R.D. Malting characteristics of sorghum cultivars. Cereal 1995, 72, 533–538. [Google Scholar]
- Chandra, G.S.; Proudlove, M.O.; Baxter, E.D. The structure of barley endosperm an important determinant of malt modification. J. Sci. Food Agric. 1999, 79, 37–46. [Google Scholar] [CrossRef]
- Oyewole, O.I.; Agboola, F.K. Comparative studies on properties of amylases extracted from kilned and unkilned malted sorghum and corn. Int. J. Biotechnol. Mol. Biol. Res. 2011, 2, 146–149. [Google Scholar]
- Eneje, L.O.; Ogu, E.O.; Aloh, C.U.; Agu, R.C.; Palmer, G.H. Effects of steeping and germination on malting performance of Nigerian white and yellow maize varieties. Process. Biochem. 2004, 39, 1013–1016. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Dlamini, B.C.; Kruger, J. 125th anniversary review: The science of the tropical cereals sorghum, maize and rice in relation to lager beer brewing. J. Inst. Brew. 2013, 119, 1–14. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Production of brewing worts from different types of sorghum malts and adjuncts supplemented with β-amylase or amyloglucosidase. J. Am. Soc. Brew. Chem. 2013, 71, 49–56. [Google Scholar] [CrossRef]
- Heredia-Olea, E.; Cortés-Ceballos, E.; Serna-Saldívar, S.O. Malting sorghum with Aspergillus oryzae enhances gluten-free wort yield and extract. J. Am. Soc. Brew. Chem. 2017, 75, 116–121. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Maltose and glucose utilization during fermentation of barley and sorghum lager beers as affected by β-amylase or amyloglucosidase addition. J. Cereal Sci. 2014, 60, 602–609. [Google Scholar] [CrossRef]
- Urias-Lugo, D.A.; Saldivar, S.O.S. Effect of amyloglucosidase on properties of lager beers produced from sorghum malt and waxy grits. J. Am. Soc. Brew. Chem. 2005, 63, 63–68. [Google Scholar] [CrossRef]
- Shen, S.; Huang, R.; Li, C.; Wu, W.; Chen, H.; Shi, J.; Chen, S.; Ye, X. Phenolic Compositions and Antioxidant Activities Differ Significantly among Sorghum Grains with Different Applications. Molecules 2018, 23, 1203. [Google Scholar] [CrossRef] [Green Version]
- Attchelouwa, C.K.; Aka-Gbézo, S.; N’guessan, F.K.; Kouakou, C.A.; Djè, M.K. Biochemical and Microbiological Changes during the Ivorian Sorghum Beer Deterioration at Different Storage Temperatures. Beverages 2017, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Embashu, W.; Iileka, O.; Nantanga, K.K.M. Namibian opaque beer: A review. J. Inst. Brew. 2019, 125, 4–9. [Google Scholar] [CrossRef]
- Zaukuu, J.L.Z.; Oduro, I.; Ellis, W.O. Processing methods and microbial assessment of pito (an African indigenous beer), at selected production sites in Ghana. J. Inst. Brew. 2016, 122, 736–744. [Google Scholar] [CrossRef]
- Ogbonna, A.C. Developments in the malting and brewing trials with sorghum. World J. Microbiol. Biotechnol. 1992, 8, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Agu, R.C.; Palmer, G.H. A reassessment of sorghum for lager-beer brewing. Bioresour. Technol. 1998, 66, 253–261. [Google Scholar] [CrossRef]
- Owuama, C.I. Brewing beer with sorghum. J. Inst. Brew. 1999, 105, 23–34. [Google Scholar] [CrossRef]
- Rubio-Flores, M.; García-Arellano, A.R.; Perez-Carrillo, E.; Serna-Saldivar, S.O. Use of Aspergillus oryzae during sorghum malting to enhance yield and quality of gluten-free lager beers. Bioresour. Bioprocess. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Sawadogo-Lingani, H.; Lei, V.; Diawara, B.; Nielsen, D.; Møller, P.; Traoré, A.; Jakobsen, M. The biodiversity of predominant lactic acid bacteria in dolo and pito wort for the production of sorghum beer. J. Appl. Microbiol. 2007, 103, 765–777. [Google Scholar] [CrossRef]
- Djameh, C.; Saalia, F.K.; Sinayobye, E.; Budu, A.; Essilfie, G.; Mensah-Brown, H.; Sefa-Dedeh, S. Optimization of the sorghum malting process for pito production in Ghana. J. Inst. Brew. 2015, 121, 106–112. [Google Scholar] [CrossRef]
- Adadi, P.; Kanwugu, O.N. Potential application of tetrapleura tetraptera and hibiscus sabdariffa (malvaceae) in designing highly flavoured and bioactive pito with functional properties. Beverages 2020, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Djameh, C.; Ellis, W.O.; Oduro, I.; Saalia, F.K.; Haslbeck, K.; Komlaga, G.A. West African sorghum beer fermented with Lactobacillus delbrueckii and Saccharomyces cerevisiae: Fermentation by-products. J. Inst. Brew. 2019, 125, 326–332. [Google Scholar] [CrossRef]
- Vázquez-Araújo, L.; Chambers IV, E.; Cherdchu, P. Consumer Input for Developing Human Food Products Made with Sorghum Grain. J. Food Sci. 2012, 77, S384–S389. [Google Scholar] [CrossRef]
- N’Guessan, F.K.; Coulibaly, H.W.; Alloue-Boraud, M.W.A.; Cot, M.; Djè, K.M. Production of freeze-dried yeast culture for the brewing of traditional sorghum beer, tchapalo. Food Sci. Nutr. 2016, 4, 34–41. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Ayeni, K.I.; Misihairabgwi, J.M.; Somorin, Y.M.; Chibuzor-Onyema, I.E.; Oyedele, O.A.; Abia, W.A.; Sulyok, M.; Shephard, G.S.; Krska, R. Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment. Compr. Rev. Food Sci. Food Saf. 2018, 17, 334–351. [Google Scholar] [CrossRef]
- Aka, S.; Dridi, B.; Bolotin, A.; Yapo, E.A.; Koussemon-Camara, M.; Bonfoh, B.; Renault, P. Characterization of lactic acid bacteria isolated from a traditional Ivoirian beer process to develop starter cultures for safe sorghum-based beverages. Int. J. Food Microbiol. 2020, 322, 108547. [Google Scholar] [CrossRef] [PubMed]
- Tano, M.B.; Aka-Gbezo, S.; Attchelouwa, C.K.; Koussémon, M. Use of Lactic Acid Bacteria as Starter Cultures in the Production of Tchapalo, a Traditional Sorghum Beer from Côte d’Ivoire. Am. J. Food Sci. Health 2020, 6, 23–31. [Google Scholar]
- Shimotsu, S.; Asano, S.; Iijima, K.; Suzuki, K.; Yamagishi, H.; Aizawa, M. Investigation of beer-spoilage ability of Dekkera/Brettanomyces yeasts and development of multiplex PCR method for beer-spoilage yeasts. J. Inst. Brew. 2015, 121, 177–180. [Google Scholar] [CrossRef]
- Rogerson, C.M. African traditional beer: Changing organization and spaces of South Africa’s sorghum beer industry. Afr. Geogr. Rev. 2019, 38, 253–267. [Google Scholar] [CrossRef]
- Aruna, C.; VisaradaI, K.B.R.S. Sorghum grain in food and brewing industry. In Breeding Sorghum for Diverse End Uses; Woodhead Publishing: Cambridge, UK, 2019; pp. 209–228. [Google Scholar]
- Tamang, J.P.; Cotter, P.; Endo, A. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pale, S.; Taonda, S.J.; Bougouma, B.; Mason, S.C. Sorghum malt and traditional beer (dolo) quality assessment in Burkina Faso. Ecol. Food Nutr. 2010, 49, 129–141. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Drought Tolerance and Water Use of Cereal Crops: A Focus on Sorghum as a Food Security Crop in Sub-Saharan Africa. J. Agron. Crop. Sci. 2017, 203, 177–191. [Google Scholar] [CrossRef]
- Mogmenga, I.; Dadiré, Y.; Somda, M.K.; Keita, I.; Ezeogu, L.I.; Ugwuanyi, J.; Traoré, A.S. Isolation and Identification of Indigenous Yeasts from “Rabilé”, a Starter Culture Used for Production of Traditional Beer “dolo”, a Condiment in Burkina Faso. Adv. Microbiol. 2019, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Disharoon, A.; Boyles, R.; Jordan, K.; Kresovich, S. Exploring diverse sorghum (Sorghum bicolor (L.) Moench) accessions for malt amylase activity. J. Inst. Brew. 2021, 127, 5–12. [Google Scholar] [CrossRef]
- Nso, E.; Ajebesome, P.; Mbofung, C.; Palmer, G. Properties of Three Sorghum Cultivars Used for the Production of Bili-Bili Beverage in Northern Cameroon. J. Inst. Brew. 2003, 109, 245–250. [Google Scholar] [CrossRef]
- Maoura, N.; Mbaiguinam, M.; Nguyen, H.V.; Gaillardin, C.; Pourquie, J. Identification and typing of the yeast strains isolated from bili bili, a traditional sorghum beer of Chad. Afr. J. Biotechnol. 2005, 4, 646–656. [Google Scholar]
- Desobgo, Z.S.C.; Nso, E.J.; Tenin, D.; Kayem, G.J. Modelling and Optimizing of Mashing Enzymes—Effect on Yield of Filtrate of Unmalted Sorghum by Use of Response Surface Methodology. J. Inst. Brew. 2010, 116, 62–69. [Google Scholar] [CrossRef]
- Kubo, R.; Funakawa, S.; Araki, S.; Kitabatake, N. Production of indigenous alcoholic beverages in a rural village of Cameroon. J. Inst. Brew. 2014, 120, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Embashu, W.; Nantanga, K.K.M. Malts: Quality and phenolic content of pearl millet and sorghum varieties for brewing nonalcoholic beverages and opaque beers. Cereal Chem. 2019, 96, 765–774. [Google Scholar] [CrossRef]
- Soji, P.A. The Potential Importance of Maize, (Zea mays L), in Nigeria, [A Case Study of 2800 Farmers Sampled at Different Locations]. Adv. Biochem. 2020, 8, 1. [Google Scholar] [CrossRef]
- Palanisamy, C.P.; Cui, B.; Zhang, H.; Jayaraman, S.; Kodiveri Muthukaliannan, G. A Comprehensive Review on Corn Starch-Based Nanomaterials: Properties, Simulations, and Applications. Polymers 2020, 12, 2161. [Google Scholar] [CrossRef] [PubMed]
- Gálvez Ranilla, L. The Application of Metabolomics for the Study of Cereal Corn (Zea mays L.). Metabolites 2020, 10, 300. [Google Scholar] [CrossRef] [PubMed]
- Green, D.I.G.; Agu, R.C.; Bringhurst, T.A.; Brosnan, J.M.; Jack, F.R.; Walker, G.M. Maximizing alcohol yields from wheat and maize and their co-products for distilling or bioethanol production. J. Inst. Brew. 2015, 121, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Onuki, S.; Koziel, J.A.; Jenks, W.S.; Cai, L.; Grewell, D.; van Leeuwen, J.H. Taking ethanol quality beyond fuel grade: A review. J. Inst. Brew. 2016, 122, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.; Jane, J. Macronutrients in Corn and Human Nutrition. Compr. Rev. Food Sci. Food Saf. 2016, 15, 581–598. [Google Scholar] [CrossRef] [Green Version]
- Ortíz-Islas, S.; García-Lara, S.; Preciado-Ortíz, R.E.; Serna-Saldívar, S.O. Fatty acid composition and proximate analysis of improved high-oil corn double haploid hybrids adapted to subtropical areas. Cereal Chem. 2019, 96, 182–192. [Google Scholar] [CrossRef]
- Shi, M.; Gao, Q.; Liu, Y. Corn, potato, and wrinkled pea starches with heat–moisture treatment: Structure and digestibility. Cereal Chem. 2018, 95, 603–614. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y. Comparison of physicochemical and mechanical properties of edible films made from navy bean and corn starches. J. Sci. Food Agric. 2021, 101, 1538–1545. [Google Scholar] [CrossRef]
- Ari Akin, P.; Miller, R.; Jaffe, T.; Koppel, K.; Ehmke, L. Sensory profile and quality of chemically leavened gluten-free sorghum bread containing different starches and hydrocolloids. J. Sci. Food Agric. 2019, 99, 4391–4396. [Google Scholar] [CrossRef] [PubMed]
- Galassi, E.; Taddei, F.; Ciccoritti, R.; Nocente, F.; Gazza, L. Biochemical and technological characterization of two C4 gluten-free cereals: Sorghum bicolor and Eragrostis tef. Cereal Chem. 2020, 97, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Awobusuyi, T.D.; Pillay, K.; Siwela, M. Consumer Acceptance of Biscuits Supplemented with a Sorghum–Insect Meal. Nutrients 2020, 12, 895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabija, A. Unconventional Raw Materials for the Bakery Industry; Performantica Publishing House: Iași, Romania, 2020; ISBN 978-606-685-731-4. [Google Scholar]
- Rashwan, A.K.; Yones, H.A.; Karim, N.; Taha, E.M.; Chen, W. Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends Food Sci. Technol. 2021, 110, 168–182. [Google Scholar] [CrossRef]
- Available online: https://www.mordorintelligence.com/industry-reports/beer-market (accessed on 25 March 2021).
Grain | Characteristic, [% DM *] | Moisture [%] | References | ||||
---|---|---|---|---|---|---|---|
Starch | Proteins | Lipid | Fiber | Ash | |||
Barley | 60 | 8–13 | - | 2–10 | - | - | [51] |
65–68 | 10–17 | 2–3 | 11–24 | 1.5–2.5 | - | [52] | |
63–65 | 8–11 | 2–3 | - | 2 | 14–15 | [19] | |
62–64 | 11.09–14.68 | 2.01–2.35 | 18.7–19.5 | - | - | [53] | |
66.97–69.08 | 10.35–12.38 | 1.58–1.71 | 3.57–5.12 | 1.94–2.39 | - | [54] | |
59.50–60.98 | 14.53–15.25 | 1.82–1.87 | 2.85–3.25 | 2.42–2.52 | - | [55] | |
65.45–69.08 | 10.37–11.93 | 1.09–2.00 | 3.07–5.10 | 1.94–2.40 | - | [56] | |
52.1–64.4 | 8.7–13.1 | 2.2–3.5 | 13.6–23.8 | 2.0–2.6 | [57] | ||
Maize | 71.88 | 8.84 | 4.57 | 2.15 | 2.33 | 10.23 | [40] |
74.4–76.8 | 8.05–11.03 | 5.91 | - | - | 15 | [39] | |
76–80 | 9–12 | 4–5 | - | 3.87 | 10–14 | [58] | |
- | 8.92–10 | - | 1.3–6.26 | 1.20–2.38 | - | [41] | |
70.99 | 9.21 | 5.10 | 2.21 | 1.05 | 11.44 | [59] | |
62–78 | 10 | 4.4 | - | - | - | [33] | |
71.7 | 9.5 | 4.3 | 2.6 | 1.4 | - | [60] | |
72–73 | 5.8–13.7 | 2.2–5.7 | 0.8–2.9 | 1.2–2.9 | 9.5–12.2 | [61] | |
Sorghum | - | 9.4 | 2.8 | - | 2.1 | - | [13] |
61.0–74.8 | 9.0–13.5 | 2.8–4.8 | - | 1.2–1.8 | 9–12 | [21] | |
55.6–75.2 | 4.4–21.1 | 2.1–7.6 | 1–3.4 | 1.3–3.3 | - | [42] | |
65.15–75.2 | 6.23–14.86 | 1.38–10.54 | 1.65–7.94 | 0.90–4.20 | 1.39–19.02 | [43] | |
70.65–76.20 | 8.90–11.02 | 2.30–2.80 | 1.40–2.70 | 0.92–1.75 | 8.10–9.99 | [62] | |
- | 12.5 | 3.30 | 1.7 | 1.9 | 9.8 | [63] | |
71.95 | 11.36 | 4.70 | 2.76 | 3.17 | 6.07 | [64] | |
64.3–73.8 | 8.19–14.02 | 2.28–4.98 | 1.41–2.55 | 1.46–2.32 | [65] |
Beer Name (Origin Country) | Raw Materials | Tehnological Process | Finished Product Characteristics | References |
---|---|---|---|---|
Sendechó (Mexic) | Blue maize, chili Guajillo, pulque | Malting, grinding, mashing, brewing, fermentation | Fermented fruit flavor, smells of cooked vegetables, tortillas, bread, dried fruit and dried chili, amber-copper red color | [75,76] |
Chicha de jora (Argentina, Euador, Peru) | Maize | Malting, grinding, brewing, lactic fermentation, alcoholic fermentation | Clear liquid, yellow color, effervescent drink, and a low alcohol content (1–3%) | [77,78] |
Umqombothi (Africa de Sud) | Maize flour, sorghum malt | Mashing, brewing, fermentation, filtration | Opaque, pink in color, rich in B vitamins, with a distinct aroma, acid and a creamy consistency, shelf life of 2–3 days | [79,80] |
Sesotho (Lesotho) | Maize, sorghum and/or wheat flour | Grinding, mashing, lactic fermentation, cooling, alcoholic fermentation | Opaque liquid, thin consistency, distinct sour taste, 3–5% (v/v) alcohol content, rich in B vitamins | [81,82] |
Chibuku (Zimbabwe, Tanzania, Zambia, Ghana, Nigeria) | Maize, sorghum, sorghum malt, barley malt | Malting, grinding, brewing, acidification, lactic fermentation, alcoholic fermentation | Opaque brown-pink liquid containing suspended and dissolved solids (3.6% w/v), alcohol content of 3–5%, pH of 3–4 and lactic acid levels of approx. 0.5 g/L | [83,84] |
Tella (Etiopia) | Maize, barley, wheat, Rhamnus prinoides L. | Malting, grinding, brewing, alcoholic fermentation | pH 3.87–4.67 alcohol content (%v/v) 3.04–3.75 CO2 content (%) 0.24–0.034 | [85,86] |
Sekete (Nigeria) | Sprouted maize | Mashing, brewing, acidification, lactic fermentation, alcoholic fermentation | Dark brown color alcohol content of 1–3% | [14,87] |
Beer Name (Origin Country) | Raw Materials | Tehnological Process | Finished Product Characteristics | References |
---|---|---|---|---|
Burukutu/Otika (Nigeria, Niger, Ghana) | Sorghum | Malting (steeping, germination), milling, mashing, boiling, fermentation, maturation | Viscous, opaque, light brown liquid, alcohol content approx. 4% (v/v), sour taste, pH = 3.3–3.5 | [42,87] |
Pito (Ghana, Togo, Nigeria) | Sorghum | Malting, grinding, mashing, brewing, lactic fermentation, alcoholic fermentation | Sour taste, characteristic, alcohol content 3–5% (v/v) | [110,111,112,113] |
Tchapalo (Coasta de Fildeș, Togo, Benin) | Sorghum | Lactic fermentation, alcoholic fermentation | Non-alcoholic beer, turbid, shelf life 3 days | [114,115,116,117,118] |
Bantu (Africa de Sud) | Sorghum | Malting, grinding, mashing, lactic fermentation, alcoholic fermentation | Turbid liquid, alcohol content 3–4% (v/v), sour taste, brown-pink color, rich in B vitamins | [119,120,121,122] |
Dolo (Burkina Faso, Benin, Rwanda) | Sorghum | Malting of red sorghum grains, crushing, mashing, cooking, lactic fermentation, filtration, boiling, alcoholic fermentation | Turbid liquid, alcohol content 1–5% (v/v), sweet-sour taste, fruit flavor | [123,124,125,126] |
Bili bili (Ciad) | Sorghum | Malting, mashing, boiling, souring, and fermenting | Turbid liquid, brown-pink color, sour taste, fruity, alcohol content 1–8% (v/v), low in carbohydrates and high in protein | [104,127,128,129,130] |
Omalovu (Namibia) | Sorghum, millet | Malting, drying, milling, souring, boiling, mashing, straining, alcoholic fermentation | Unpasteurized beer, opaque, red-brown or cream color, pH = 3.06–4.34, alcohol content 0.18–4.05% (v/v) | [104,131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabija, A.; Ciocan, M.E.; Chetrariu, A.; Codină, G.G. Maize and Sorghum as Raw Materials for Brewing, a Review. Appl. Sci. 2021, 11, 3139. https://doi.org/10.3390/app11073139
Dabija A, Ciocan ME, Chetrariu A, Codină GG. Maize and Sorghum as Raw Materials for Brewing, a Review. Applied Sciences. 2021; 11(7):3139. https://doi.org/10.3390/app11073139
Chicago/Turabian StyleDabija, Adriana, Marius Eduard Ciocan, Ancuta Chetrariu, and Georgiana Gabriela Codină. 2021. "Maize and Sorghum as Raw Materials for Brewing, a Review" Applied Sciences 11, no. 7: 3139. https://doi.org/10.3390/app11073139
APA StyleDabija, A., Ciocan, M. E., Chetrariu, A., & Codină, G. G. (2021). Maize and Sorghum as Raw Materials for Brewing, a Review. Applied Sciences, 11(7), 3139. https://doi.org/10.3390/app11073139