Augmentation Index Is Inversely Associated with Skeletal Muscle Mass, Muscle Strength, and Anaerobic Power in Young Male Adults: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedure
2.2.1. Measurements of Anthropometric Parameters and Cardiometabolic Risk Factors
2.2.2. Brachial-Ankle Pulse Wave Velocity (baPWV)
2.2.3. Augmentation Index (AIx)
2.2.4. Muscular Strength
2.2.5. Anaerobic Power
2.3. Statistics
3. Results
3.1. Correlation between Skeletal Muscle Mass, Muscular Strength, and Anaerobic Power
3.2. Correlation between Cardiometabolic Risk Factors and Arterial Stiffness (baPWV, AIx, AIx@75)
3.3. Correlation between Muscular Variables and Arterial Stiffness (baPWV, AIx)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolan, E.; Thijs, L.; Li, Y.; Atkins, N.; McCormack, P.; McClory, S.; O’Brien, E.; Staessen, J.A.; Stanton, A.V. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the dublin outcome study. Hypertension 2006, 47, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Auer, J.; O’Rourke, M.F.; Kvas, E.; Lassnig, E.; Berent, R.; Eber, B. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation 2004, 109, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Said, M.A.; Eppinga, R.N.; Lipsic, E.; Verweij, N.; van der Harst, P. Relationship of arterial stiffness index and pulse pressure with cardiovascular disease and mortality. J. Am. Heart Assoc. 2018, 7, e007621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-Y.; Oh, B.-H. Aging and arterial stiffness. Circ. J. 2010, 1010120923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z. Aging, arterial stiffness, and hypertension. Hypertension 2015, 65, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Lakatta, E.G. Age-associated cardiovascular changes in health: Impact on cardiovascular disease in older persons. Heart Fail. Rev. 2002, 7, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Urbina, E.M.; Kieltkya, L.; Tsai, J.; Srinivasan, S.R.; Berenson, G.S. Impact of multiple cardiovascular risk factors on brachial artery distensibility in young adults: The bogalusa heart study. Am. J. Hypertens. 2005, 18, 767–771. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.; Lawes, C.M.; Bennett, D.A.; Milne, R.J.; Rodgers, A. Treatment with drugs to lower blood pressure and blood cholesterol based on an individual’s absolute cardiovascular risk. Lancet 2005, 365, 434–441. [Google Scholar] [CrossRef]
- Cook, S.; Togni, M.; Schaub, M.C.; Wenaweser, P.; Hess, O.M. High heart rate: A cardiovascular risk factor? Eur. Heart J. 2006, 27, 2387–2393. [Google Scholar] [CrossRef]
- Nakae, I.; Matsuo, S.; Matsumoto, T.; Mitsunami, K.; Horie, M. Augmentation index and pulse wave velocity as indicators of cardiovascular stiffness. Angiology 2008, 59, 421–426. [Google Scholar] [CrossRef]
- Higashi, H.; Okayama, H.; Saito, M.; Morioka, H.; Aono, J.; Yoshii, T.; Hiasa, G.; Sumimoto, T.; Nishimura, K.; Inoue, K. Relationship between augmentation index and left ventricular diastolic function in healthy women and men. Am. J. Hypertens. 2013, 26, 1280–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takami, T.; Saito, Y. Azelnidipine plus olmesartan versus amlodipine plus olmesartan on arterial stiffness and cardiac function in hypertensive patients: A randomized trial. Drug Des. Dev. Ther. 2013, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, O.; Hiraoka, K.; Watanabe, T.; Kinoshita, J.; Kawasumi, M.; Yoshii, H.; Kawamori, R. Diabetic retinopathy is associated with pulse wave velocity, not with the augmentation index of pulse waveform. Cardiovasc. Diabetol. 2008, 7, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.W.; Sung, S.H.; Chen, C.K.; Chen, I.M.; Cheng, H.M.; Yu, W.C.; Shih, C.C.; Chen, C.H. Measures of carotid–femoral pulse wave velocity and augmentation index are not reliable in patients with abdominal aortic aneurysm. J. Hypertens. 2013, 31, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, J.; Hayashi, K.; Yokoi, T.; Cortez-Cooper, M.Y.; DeVan, A.; Anton, M.; Tanaka, H. Brachial–ankle pulse wave velocity: An index of central arterial stiffness? J. Hum. Hypertens. 2005, 19, 401–406. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [Green Version]
- Veijalainen, A.; Tompuri, T.; Haapala, E.; Viitasalo, A.; Lintu, N.; Väistö, J.; Laitinen, T.; Lindi, V.; Lakka, T. Associations of cardiorespiratory fitness, physical activity, and adiposity with arterial stiffness in children. Scand. J. Med. Sci. Sports 2016, 26, 943–950. [Google Scholar] [CrossRef]
- Boreham, C.A.; Ferreira, I.; Twisk, J.W.; Gallagher, A.M.; Savage, M.J.; Murray, L.J. Cardiorespiratory fitness, physical activity, and arterial stiffness: The northern ireland young hearts project. Hypertension 2004, 44, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Madden, K.M.; Lockhart, C.; Cuff, D.; Potter, T.F.; Meneilly, G.S. Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia. Diabetes Care 2009, 32, 1531–1535. [Google Scholar] [CrossRef] [Green Version]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the american college of sports medicine and the american heart association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [Green Version]
- Fahs, C.; Heffernan, K.; Ranadive, S.; Jae, S.; Fernhall, B. Muscular strength is inversely associated with aortic stiffness in young men. Med. Sci. Sports Exerc. 2010, 42, 1619–1624. [Google Scholar] [CrossRef]
- Ochi, M.; Kohara, K.; Tabara, Y.; Kido, T.; Uetani, E.; Ochi, N.; Igase, M.; Miki, T. Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis 2010, 212, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Alkhawam, H.; Madanieh, R.; Shah, N.; Kosmas, C.E.; Vittorio, T.J. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J. Cardiol. 2017, 9, 134. [Google Scholar] [CrossRef]
- Thomas, G.D.; Shaul, P.W.; Yuhanna, I.S.; Froehner, S.C.; Adams, M.E. Vasomodulation by skeletal muscle–derived nitric oxide requires α-syntrophin–mediated sarcolemmal localization of neuronal nitric oxide synthase. Circ. Res. 2003, 92, 554–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koral, J.; Oranchuk, D.J.; Herrera, R.; Millet, G.Y. Six sessions of sprint interval training improves running performance in trained athletes. J. Strength Cond. Res. 2018, 32, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.N.; Park, M.S.; Lim, K.I.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H. Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: The korean sarcopenic obesity study (ksos). Diabetes Res. Clin. Pract. 2011, 93, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef]
- Janner, J.H.; Godtfredsen, N.S.; Ladelund, S.; Vestbo, J.; Prescott, E. Aortic augmentation index: Reference values in a large unselected population by means of the sphygmocor device. Am. J. Hypertens. 2010, 23, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Fujime, M.; Tomimatsu, T.; Okaue, Y.; Koyama, S.; Kanagawa, T.; Taniguchi, T.; Kimura, T. Central aortic blood pressure and augmentation index during normal pregnancy. Hypertens. Res. 2012, 35, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.; Kalfon, R.; Madzima, T.; Wong, A. Effects of whole-body vibration exercise training on aortic wave reflection and muscle strength in postmenopausal women with prehypertension and hypertension. J. Hum. Hypertens. 2014, 28, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, I.B.; MacCallum, H.; Flint, L.; Cockcroft, J.R.; Newby, D.E.; Webb, D.J. The influence of heart rate on augmentation index and central arterial pressure in humans. J. Physiol. 2000, 525(Pt. 1), 263–270. [Google Scholar] [CrossRef]
- Lee, S.W.; Youm, Y.; Kim, C.O.; Lee, W.J.; Choi, W.; Chu, S.H.; Park, Y.-R.; Kim, H.C. Association between skeletal muscle mass and radial augmentation index in an elderly korean population. Arch. Gerontol. Geriatr. 2014, 59, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Marsh, G.D.; Paterson, D.H.; Govindasamy, D.; Cunningham, D.A. Anaerobic power of the arms and legs of young and older men. Exp. Physiol 1999, 84, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Gent, D.N.; Norton, K. Aging has greater impact on anaerobic versus aerobic power in trained masters athletes. J. Sports Sci. 2013, 31, 97–103. [Google Scholar] [CrossRef]
- Potteiger, J.A.; Smith, D.L.; Maier, M.L.; Foster, T.S. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division i men’s hockey athletes. J. Strength Cond. Res. 2010, 24, 1755–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppin, E.; Heath, E.M.; Bressel, E.; Wagner, D.R. Wingate anaerobic test reference values for male power athletes. Int. J. Sports Physiol. Perform. 2012, 7, 232–236. [Google Scholar] [CrossRef]
- Bera, T.; Rajapurkar, M. Body composition, cardiovascular endurance and anaerobic power of yogic practitioner. Indian J. Physiol. Pharmacol. 1993, 37, 225. [Google Scholar] [PubMed]
- Gitt, A.K.; Wasserman, K.; Kilkowski, C.; Kleemann, T.; Kilkowski, A.; Bangert, M.; Schneider, S.; Schwarz, A.; Senges, J. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation 2002, 106, 3079–3084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchikura, S.; Shoji, T.; Kimoto, E.; Shinohara, K.; Hatsuda, S.; Koyama, H.; Emoto, M.; Nishizawa, Y. Brachial-ankle pulse wave velocity as an index of central arterial stiffness. J. Atheroscler. Thromb. 2010, 17, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Cortez-Cooper, M.Y.; Supak, J.A.; Tanaka, H. A new device for automatic measurements of arterial stiffness and ankle-brachial index. Am. J. Cardiol. 2003, 91, 1519–1522. [Google Scholar] [CrossRef]
- Safar, M.; Frohlich, E.D. Atherosclerosis, Large Arteries and Cardiovascular Risk; Karger Medical and Scientific Publishers: Basel, Switzerland, 2007; Volume 44. [Google Scholar]
- O’Rourke, M.F.; Blazek, J.V.; Morreels, C.L., Jr.; Krovetz, L.J. Pressure wave transmission along the human aorta: >changes with age and in arterial degenerative disease. Circ. Res. 1968, 23, 567–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez-Cooper, M.Y.; DeVan, A.E.; Anton, M.M.; Farrar, R.P.; Beckwith, K.A.; Todd, J.S.; Tanaka, H. Effects of high intensity resistance training on arterial stiffness and wave reflection in women. Am. J. Hypertens. 2005, 18, 930–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, Y.; Masaki, H.; Yunoki, Y.; Tabuchi, A.; Morita, I.; Mohri, S.; Tanemoto, K. Ankle-brachial index, toe-brachial index, and pulse volume recording in healthy young adults. Ann. Vasc. Dis. 2015, 8, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuh, D.; Bassey, E.J.; Butterworth, S.; Hardy, R.; Wadsworth, M.E.; Musculoskeletal Study, T. Grip strength, postural control, and functional leg power in a representative cohort of british men and women: Associations with physical activity, health status, and socioeconomic conditions. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 224–231. [Google Scholar] [CrossRef] [Green Version]
Variables (Unit) | Mean ± SEM |
---|---|
Age (year) | 23.9 ± 0.5 |
Height (cm) | 176.3 ± 1.3 |
Weight (kg) | 77.7 ± 2.0 |
Body fat (%) | 16.6 ± 1.0 |
Muscle Mass (kg) | 37.1 ± 4.5 |
Muscle Mass (kg/m2) | 11.9 ± 0.2 |
Hand Grip Strength (kg) | 50.30± 0.8 |
Hand Grip Strength (kg/m2) | 16.2 ± 0.4 |
Peak Anaerobic Power (W) | 918.4 ± 25.1 |
Average Anaerobic Power (W) | 634.2 ± 20.2 |
Minimum Anaerobic Power (W) | 395.0 ± 21.7 |
HRrest (beats min−1) | 60.3 ± 2.5 |
AIx (%) | 4.0 ± 1.4 |
AIx@75 (%) | −3.1 ± 3.0 |
baPWV (cm/s) | 1173.5 ± 30.4 |
Weekly engaged exercise times (times/week) | 4.4 ± 0.2 |
Variables (Unit) | Mean ± SEM |
---|---|
BMI (kg/m2) | 25.1 ± 0.6 |
SBP (mmHg) | 119.4 ± 2.1 |
DBP (mmHg) | 66.9 ± 2.1 |
Total-C (mg/dL) | 174.6 ± 7.5 |
HDL-C (mg/dL) | 54.4 ± 2.2 |
LDL-C (mg/dL) | 98.9 ± 6.7 |
TG (mg/dL) | 108.2 ± 10.9 |
FG (mg/dL) | 91.4 ± 2.6 |
HbA1c (%) | 5.3 ± 0.0 |
Variables | r-Value | ||||
---|---|---|---|---|---|
Skeletal Muscle Mass | Muscular Strength | Peak Power | Average Power | Minimum Power | |
Skeletal muscle mass | 0.849 <0.001 | 0.625 0.001 | 0.563 0.005 | 0.468 0.024 | |
Muscular strength | 0.543 0.007 | 0.608 0.002 | 0.598 0.003 | ||
Peak power | 0.825 <0.001 | 0.590 0.003 | |||
Average power | 0.828 <0.001 | ||||
Minimum power |
Variables | r-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
BMI | SBP | DBP | Total-C | HDL-C | LDL-C | FG | TG | HbA1c | |
baPWV | 0.247 0.256 | 0.382 0.072 | 0.476 0.022 | −0.326 0.129 | 0.135 0.539 | −0.309 0.151 | 0.235 0.281 | −0.147 0.503 | −0.015 0.946 |
AIx | −0.636 0.001 | −0.178 0.416 | −0.084 0.702 | −0.081 0.713 | −0.151 0.491 | −0.014 0.950 | −0.513 0.012 | −0.036 0.870 | −0.068 0.757 |
AIx@75 | −0.557 0.006 | −0.168 0.444 | −0.021 0.924 | −0.073 0.741 | −0.119 0.589 | −0.014 0.951 | −0.483 0.020 | −0.001 0.995 | −0.022 0.920 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Byun, K.; Hwang, M.-H.; Lee, S. Augmentation Index Is Inversely Associated with Skeletal Muscle Mass, Muscle Strength, and Anaerobic Power in Young Male Adults: A Preliminary Study. Appl. Sci. 2021, 11, 3146. https://doi.org/10.3390/app11073146
Lee D, Byun K, Hwang M-H, Lee S. Augmentation Index Is Inversely Associated with Skeletal Muscle Mass, Muscle Strength, and Anaerobic Power in Young Male Adults: A Preliminary Study. Applied Sciences. 2021; 11(7):3146. https://doi.org/10.3390/app11073146
Chicago/Turabian StyleLee, Dongmin, Kyengho Byun, Moon-Hyon Hwang, and Sewon Lee. 2021. "Augmentation Index Is Inversely Associated with Skeletal Muscle Mass, Muscle Strength, and Anaerobic Power in Young Male Adults: A Preliminary Study" Applied Sciences 11, no. 7: 3146. https://doi.org/10.3390/app11073146
APA StyleLee, D., Byun, K., Hwang, M. -H., & Lee, S. (2021). Augmentation Index Is Inversely Associated with Skeletal Muscle Mass, Muscle Strength, and Anaerobic Power in Young Male Adults: A Preliminary Study. Applied Sciences, 11(7), 3146. https://doi.org/10.3390/app11073146