Semi-Minimal-Pruned Hedge (SMPH) as a Climate Change Adaptation Strategy: Impact of Different Yield Regulation Approaches on Vegetative and Generative Development, Maturity Progress and Grape Quality in Riesling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Vineyard Design and Thinning Treatments
2.2. Phenological Monitoring and Assessment of Phenological Progress Curves
2.3. Vegetative and Generative Parameters
2.3.1. Number of Shoots, Shoot Length, Shoot Diameter and Leaf Area per Shoot
2.3.2. Number of Nodes, Budburst Rate and Inflorescences per Shoot
2.4. Leaf Area and Leaf Area to Fruit Weight-Ratio
2.5. Assessment of Maturity Progress
2.6. Bunch Architecture
2.7. Botrytis cinerea Monitoring
2.8. Quantification of Yield and Analytical Parameters
2.9. Statistical Analysis and Data Visualization
3. Results
3.1. Vegetative and Generative Parameters
3.2. Leaf Area to Fruit Weight-Ratio
3.3. Phenology
3.4. Maturity Progress
3.4.1. Maturity at Harvest of VSP
3.4.2. Maturity at Harvest of VSP and SMPH
3.5. Bunch Architecture and Botrytis cinerea Susceptibility
3.5.1. Bunch Architecture
3.5.2. Botrytis cinerea Susceptibility during Ripening
3.5.3. Botrytis cinerea Incidence and Severity at Harvest
3.6. Crop Level, Thinning Performance and Grape Juice Composition
3.6.1. Crop Level
3.6.2. Grape Juice Composition
4. Discussion
4.1. Vegetative and Generative Development
4.2. Phenological Development and Maturity Progress
4.3. Bunch Architecture and Botrytis cinerea Susceptibility
4.4. Alternate Bearing and Thinning Performance
4.5. Grape Juice Composition at Harvest
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stock, M.; Badeck, F.; Gerstengarbe, F.-W.; Hoppmann, D.; Kartschall, T.; Oesterle, H.; Werner, P.C.; Wodinski, M. Perspectives of the Climatic Change until 2050 for the Viticulture in Germany (Climate 2050): Final Report of the FDW Project—Climate 2050, 106th ed.; Gerstengarb, F.-W., Ed.; Potsdam Institute for Climate Impact Research (PIK): Potsdam, Germany, 2007. [Google Scholar]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Fraga, H.; Cortázar-Atauri, I.G.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- Molitor, D.; Junk, J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the luxembourgish grapegrowing region. OENO One 2019, 53, 409–422. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for european viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Nair, N.G.; Allen, R.N. Infection of grape flowers and berries by Botrytis cinerea as a function of time and temperature. Mycol. Res. 1993, 97, 1012–1014. [Google Scholar] [CrossRef]
- Poling, E.B. Spring cold injury to winegrapes and protection strategies and methods. Horts 2008, 43, 1652–1662. [Google Scholar] [CrossRef]
- Silvestroni, O.; Lanari, V.; Lattanzi, T.; Palliotti, A. Delaying winter pruning, after pre-pruning, alters budburst, leaf area, photosynthesis, yield and berry composition in Sangiovese (Vitis vinifera L.). Aust. J. Grape Wine Res. 2018, 24, 478–486. [Google Scholar] [CrossRef]
- Moran, M.; Petrie, P.; Sadras, V. Effects of late pruning and elevated temperature on phenology, yield components, and berry traits in Shiraz. Am. J. Enol. Vitic. 2019, 70, 9–18. [Google Scholar] [CrossRef]
- Martinez De Toda, F.; García, J.; Balda, P. Preliminary results on forcing vine regrowth to delay ripening to a cooler period. Vitis J. Grapevine Res. 2019, 58, 17–22. [Google Scholar]
- Palliotti, A.; Frioni, T.; Tombesi, S.; Sabbatini, P.; Cruz-Castillo, J.G.; Lanari, V.; Silvestroni, O.; Gatti, M.; Poni, S. Double-pruning grapevines as a management tool to delay berry ripening and control yield. Am. J. Enol. Vitic. 2017, 68, 412–421. [Google Scholar] [CrossRef]
- Gatti, M.; Galbignani, M.; Garavani, A.; Bernizzoni, F.; Tombesi, S.; Palliotti, A.; Poni, S. Manipulation of ripening via antitranspirants in cv. Barbera (Vitis vinifera L.). Aust. J. Grape Wine Res. 2016, 22, 245–255. [Google Scholar] [CrossRef]
- Boettcher, C.; Harvey, K.; Forde, C.G.; Boss, P.K.; Davies, C. Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust. J. Grape Wine Res. 2011, 17, 1–8. [Google Scholar] [CrossRef]
- Poni, S.; Casalini, L.; Bernizzoni, F.; Civardi, S.; Intrieri, C. Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. Am. J. Enol. Vitic. 2006, 57, 397–407. [Google Scholar]
- Poni, S.; Gatti, M.; Bernizzoni, F.; Civardi, S.; Bobeica, N.; Magnanini, E.; Palliotti, A. Late leaf removal aimed at delaying ripening in cv. Sangiovese: Physiological assessment and vine performance. Aust. J. Grape Wine Res. 2013, 19, 378–387. [Google Scholar] [CrossRef]
- Palliotti, A.; Panara, F.; Silvestroni, O.; Lanari, V.; Sabbatini, P.; Howell, G.S.; Gatti, M.; Poni, S. Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Aust. J. Grape Wine Res. 2013, 19, 369–377. [Google Scholar] [CrossRef]
- Intrieri, C.; Filippetti, I.; Allegro, G.; Valentini, G.; Pastore, C.; Colucci, E. The Semi-Minimal-Pruned Hedge: A novel mechanized grapevine training system. Am. J. Enol. Vitic. 2011, 62, 312–318. [Google Scholar] [CrossRef]
- Lopes, C.; Melicias, J.; Aleixo, A.; Laureano, O.; Castro, R. Effect of mechanical hedge pruning on growth, yield and quality of Cabernet Sauvignon grapevines. Acta Hortic. 2000, 526, 261–268. [Google Scholar] [CrossRef]
- Molitor, D.; Schultz, M.; Mannes, R.; Pallez-Barthel, M.; Hoffmann, L.; Beyer, M. Semi-Minimal Pruned Hedge: A potential climate change adaptation strategy in viticulture. Agronomy 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Kraus, C.; Pennington, T.; Herzog, K.; Hecht, A.; Fischer, M.; Voegele, R.T.; Hoffmann, C.; Töpfer, R.; Kicherer, A. Effects of canopy architecture and microclimate on grapevine health in two training systems. Vitis J. Grapevine Res. 2018, 57, 53–60. [Google Scholar]
- Walg, O.; Blätz, M.; Friedel, M. Minimalschnitt im Spalier–eine wirksame Möglichkeit zur Spätfrostprävention. Dtsch. Weinbau-Jahrb. 2019, 2018, 76–85. [Google Scholar]
- Coombe, B.G. Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Parker, A.K.; Cortázar-Atauri, I.G.; Leeuwen, C.; Chuine, I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust. J. Grape Wine Res. 2011, 17, 206–216. [Google Scholar] [CrossRef]
- Doering, J.; Stoll, M.; Kauer, R.; Frisch, M.; Tittmann, S. Indirect estimation of leaf area index in VSP-trained grapevines using plant area index. Am. J. Enol. Vitic. 2014, 65, 153–158. [Google Scholar] [CrossRef]
- Dukes, B.C.; Butzke, C.E. Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/N-acetyl-L-cysteine spectrophotometric assay. Am. J. Enol. Vitic. 1998, 49, 125–134. [Google Scholar]
- Ogle, D.H.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.31. 2020. Available online: https://github.com/droglenc/FSA (accessed on 17 November 2020).
- Friedel, M.; Schäfer, J.; Blätz, M.; Stoll, M.; Walg, O. Minimal-invasiv?: Long-term study on SMPH. Dtsch. Weinbau 2018, 12, 28–32. [Google Scholar]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 2017, 51, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Marais, J.; van Wyk, C.J.; Rapp, A. Effect of storage time, temperature and region on the levels of 1,1,6-trimethyl-1,2-dihydronaphthalene and other volatiles, and on quality of Weisser Riesling wines. S. Afr. J. Enol. Vitic. 1992, 13, 33–44. [Google Scholar]
- Weyand, K.M.; Schultz, H.R. Regulating yield and wine quality of minimal prunning systems through the application of gibberellic acid. OENO One 2006, 40, 151–163. [Google Scholar] [CrossRef]
- Naor, A.; Gal, Y.; Bravdo, B. Shoot and cluster thinning influence vegetative growth, fruit yield, and wine quality of Sauvignon blanc grapevines. J. Am. Soc. Hort. Sci. 2002, 127, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Müller, E. Weinbau, 3rd ed.; Kadisch, E., Müller, E., Eds.; Ulmer: Stuttgart, Germany, 2008. [Google Scholar]
- Parker, A.K.; Hofmann, R.W.; van Leeuwen, C.; McLachlan, A.; Trought, M. Manipulating the leaf area to fruit mass ratio alters the synchrony of total soluble solids accumulation and titratable acidity of grape berries. Aust. J. Grape Wine Res. 2015, 21, 266–276. [Google Scholar] [CrossRef]
- Parker, A.K.; Raw, V.; Martin, D.; Haycock, S.; Sherman, E.; Trought, M.C.T. Reduced grapevine canopy size post-flowering via mechanical trimming alters ripening and yield of ‘Pinot noir’. Vitis J. Grapevine Res. 2016, 55, 1–9. [Google Scholar]
- Stoll, M.; Lafontaine, M.; Schultz, H.R. Possibilities to reduce the velocity of berry maturation through various leaf area to fruit ratio modifications in Vitis vinifera L. Progrès Agric. Vitic. 2010, 127, 68–71. [Google Scholar]
- Zheng, W.; Del Galdo, V.; García, J.; Balda, P.; Martínez de Toda, F. Use of minimal pruning to delay fruit maturity and improve berry composition under climate change. Am. J. Enol. Vitic. 2017, 68, 136–140. [Google Scholar] [CrossRef]
- Hofmann, M.; Stoll, M.; Schultz, H.R. Klimawandel und Weinbau. Geogr. Rundsch. 2016, 3, 20–26. [Google Scholar]
- Schüttler, A.; Guthier, C.; Stoll, M.; Darriet, P.; Rauhut, D. Impact of grape cluster defoliation on TDN potential in cool climate Riesling wines. Biol. Web Conf. 2015, 5, 010061-3. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Feng, H.; Qian, M.C. C13-norisoprenoids in grape and wine affected by different canopy management. In Advances in Wine Research; Ebeler, S.B., Sacks, G., Vidal, S., Winterhalter, P., Eds.; American Chemical Society: Washington, DC, USA, 2015; pp. 147–160. [Google Scholar]
- Molitor, D.; Baus, O.; Hoffmann, L.; Beyer, M. Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes. OENO One 2016, 50, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Becker, T.; Knoche, M. Deposition, strain, and microcracking of the cuticle in developing ’Riesling’ grape berries. Vitis J. Grapevine Res. 2012, 51, 1–6. [Google Scholar]
- Herzog, K.; Wind, R.; Töpfer, R. Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea. Sensors 2015, 15, 12498–12512. [Google Scholar] [CrossRef] [PubMed]
- Molitor, D.; Baron, N.; Sauerwein, T.; André, C.M.; Kicherer, A.; Döring, J.; Stoll, M.; Beyer, M.; Hoffmann, L.; Evers, D. Postponing first shoot topping reduces grape cluster compactness and delays bunch rot epidemic. Am. J. Enol. Vitic. 2015, 66, 164–176. [Google Scholar] [CrossRef]
- Molitor, D.; Behr, M.; Fischer, S.; Hoffmann, L.; Evers, D. Timing of cluster-zone leaf removal and its impact on canopy morphology, cluster structure and bunch rot susceptibility of grapes. OENO One 2011, 45, 149–159. [Google Scholar] [CrossRef]
- Intrieri, C.; Filippetti, I.; Allegro, G.; Centinari, M.; Poni, S. Early defoliation (hand vs mechanical) for improved crop control and grape composition in Sangiovese (Vitis vinifera L.). Aust. J. Grape Wine Res. 2008, 14, 25–32. [Google Scholar] [CrossRef]
- Hed, B.; Centinari, M. Gibberellin application improved bunch rot control of Vignoles grape, but response to mechanical defoliation aried between training systems. Plant Dis. 2021, 105, 339–345. [Google Scholar] [CrossRef]
- Hed, B.; Ngugi, H.K.; Travis, J.W. Use of gibberellic acid for management of bunch rot on Chardonnay and Vignoles grape. Plant Dis. 2011, 95, 269–278. [Google Scholar] [CrossRef]
- Wang, X.; De Bei, R.; Fuentes, S.; Collins, C. Influence of canopy management practices on canopy architecture and reproductive performance of Semillon and Shiraz grapevines in a hot climate. Am. J. Enol. Vitic. 2019, 70, 360–372. [Google Scholar] [CrossRef]
- Clingeleffer, P.R. Plant management research: Status and what it can offer to address challenges and limitations. Aust. J. Grape Wine Res. 2010, 16, 25–32. [Google Scholar] [CrossRef]
- Intrieri, C.; Poni, S.; Lia, G.; Del Gomez Campo, M. Vine performance and leaf physiology of conventionally and minimally pruned Sangiovese grapevines. Vitis 2001, 40, 123–130. [Google Scholar]
- Schiefer, H.-C.; Thim, G. Dem Minimalschnitt auf der Spur: Veränderung von Menge und Güte. Dtsch. Weinmag. 2020, 26, 28–31. [Google Scholar]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar]
- Ollat, N.; Gaudillere, J.P. The effect of limiting leaf area during stage I of berry growth on development and composition of berries of Vitis vinifera L. cv. Cabernet Sauvignon. Am. J. Enol. Vitic. 1998, 49, 251–258. [Google Scholar]
- Friedel, M.; Stoll, M.; Patz, C.D.; Will, F.; Dietrich, H. Impact of light exposure on fruit composition of white ’Riesling’ grape berries (Vitis vinifera L.). Vitis 2015, 54, 107–116. [Google Scholar]
- Matthews, M.A.; Anderson, M.M. Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. Am. J. Enol. Vitic. 1988, 39, 313–320. [Google Scholar]
Mechanical | Biotechnological | ||||||
---|---|---|---|---|---|---|---|
Parameters | Darwin-Rotor | Harvest machine | Gibberellic acid | ||||
Treatment abbreviations | SMPH ST | SMPH BT | SMPH GA | ||||
Thinning target (organ) | Shoots | Bunches | Inflorescences/Blossom | ||||
Time | 2–3 leaves separated | Pea size stage of fruit development | Flowering, 30% caps off | ||||
Phenological stage (E-L number) | 9 | 31 | 21 | ||||
Thinning target (intensity) | 40–50% | 40–50% | 50 ppm | ||||
Application | East side of canopy | Both sides of canopy | Both sides of canopy | ||||
Adjustments | 2017–2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 |
Hydraulic oil [L] | 20 | - | - | ||||
Mechanical thinning frequency [beats min−1] | - | 380 | 355 | 365 | - | ||
Velocity [km h−1] | 4 | 3 | 4 |
Treatment | p-Values | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | VSP | SMPH | SMPH GA | SMPH BT | SMPH ST | Vintage | Treatment | Vintage * Treatment |
Nodes per meter | 17.65 b ± 2.57 | 360.61 a ± 75.76 | 399.89 a ± 102.52 | 374.83 a ± 87.15 | 350.72 a ± 89.93 | p < 0.001 | p < 0.001 | p = 0.007 |
Shoots per meter | 17.98 c ± 2.76 | 181.17 a ± 13.81 | 177.11 a ± 23.70 | 182.50 a ± 31.09 | 123.56 b ± 14.49 | p < 0.001 | p < 0.001 | p < 0.001 |
Shoot length [cm] | 137.90 a ± 7.05 | 32.81 b ± 9.93 | 36.26 b ± 7.49 | 38.02 b ± 10.27 | 44.31 b ± 7.02 | p = 0.335 | p < 0.001 | p = 0.796 |
Inflorescences per shoot | 1.89 a ± 0.53 | 0.59 b ± 0.12 | 0.52 b ± 0.13 | 0.65 b ± 0.19 | 0.75 b ± 0.18 | p = 0.351 | p = 0.002 | p = 0.405 |
Inflorescences per meter | 32.78 b ± 3.61 | 109.17 a ± 25.50 | 98.94 a ± 30.68 | 120.06 a ± 25.94 | 94.17 a ± 31.40 | p = 0.997 | p < 0.001 | p = 0.668 |
Bud burst rate [%] | 101.91 a ± 7.03 | 51.30 bc ± 14.92 | 44.29 c ± 13.86 | 48.69 b ± 17.46 | 64.14 b ± 9.71 | p = 0.348 | p < 0.001 | p < 0.001 |
Leaf area per shoot [cm2] | 4284.31 a ± 389.94 | 548.31 b ± 110.94 | 554.63 b ± 171.34 | 642.91 b ± 137.13 | 824.83 b ± 321.03 | p = 0.728 | p < 0.001 | p = 0.097 |
LA/m canopy [m2] before trimming | 4.89 c ± 0.60 | 8.72 ab ± 1.61 | 8.96 ab ± 1.43 | 9.81 a ± 1.10 | 7.73 b ± 1.28 | p < 0.001 | p < 0.001 | p = 0.570 |
LA/m canopy [m2] after trimming | 4.22 c ± 0.30 | 5.83 ab ± 0.85 | 5.63 ab ± 0.50 | 6.08 a ± 0.54 | 5.39 b ± 0.65 | p < 0.001 | p < 0.001 | p = 0.545 |
Leaf area to fruit weight-ratio [cm2 g−1] | 16.99 bc ± 4.82 | 14.01 c ± 3.35 | 16.69 bc ± 6.48 | 21.49 a ± 4.24 | 19.04 ab ± 3.76 | p < 0.001 | p < 0.001 | p = 0.003 |
Treatment | p-Values | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | VSP | SMPH | SMPH GA | SMPH BT | SMPH ST | Vintage | Treatment | Vintage * Treatment |
Yield [t ha−1] | 13.82 c ± 4.25 | 22.27 a ± 4.60 | 18.19 b ± 6.24 | 13.96 c ± 2.80 | 14.89 c ± 5.22 | p < 0.001 | p < 0.001 | p < 0.001 |
Yield per vine [kg] | 3.32 c ± 1.02 | 5.34 a ± 1.10 | 4.37 b ± 1.50 | 3.35 c ± 0.67 | 3.57 c ± 1.25 | p < 0.001 | p < 0.001 | p < 0.001 |
Total soluble solids [°Brix] | 21.56 ± 1.33 | 20.48 ± 0.81 | 21.02 ± 0.55 | 21.57 ± 1.05 | 21.16 ± 1.32 | p = 0.001 | p = 0.295 | p = 0.011 |
Reducing sugars [g L−1] | 210.31 ± 15.72 | 198.02 ± 8.57 | 204.44 ± 5.99 | 210.86 ± 11.61 | 206.06 ± 14.97 | p = 0.002 | p = 0.263 | p = 0.008 |
Extract [g L−1] | 234.23 ± 15.38 | 221.76 ± 9.43 | 227.98 ± 6.30 | 234.37 ± 12.11 | 229.59 ± 15.25 | p = 0.001 | p = 0.295 | p = 0.011 |
Total acidity [g L−1] | 12.43 ± 3.55 | 10.53 ± 2.53 | 10.64 ± 2.99 | 9.68 ± 2.75 | 10.27 ± 2.92 | p < 0.001 | p = 0.491 | p = 0.999 |
Tartaric acid [g L−1] | 6.49 a ± 1.94 | 6.11 b ± 1.13 | 5.85 c ± 1.28 | 5.78 c ± 1.04 | 5.98 bc ± 1.18 | p < 0.001 | p < 0.001 | p < 0.001 |
Malic acid [g L−1] | 6.38 ± 2.30 | 5.02 ± 2.08 | 5.33 ± 2.19 | 4.61 ± 2.03 | 4.99 ± 2.22 | p < 0.001 | p = 0.298 | p = 0.9996 |
Tartaric to Malic ratio | 1.09 ± 0.29 | 1.42 ± 0.68 | 1.24 ± 0.48 | 1.47 ± 0.64 | 1.41 ± 0.66 | p < 0.001 | p = 0.533 | p = 0.576 |
TSS to TA ratio | 1.90 d ± 0.66 | 2.03 c ± 0.43 | 2.11 bc ± 0.55 | 2.40 a ± 0.70 | 2.19 b ± 0.53 | p < 0.001 | p < 0.001 | p < 0.001 |
pH-value | 3.08 ± 0.23 | 3.09 ± 0.08 | 3.05 ± 0.09 | 3.11 ± 0.09 | 3.17 ± 0.10 | p < 0.001 | p = 0.206 | p = 0.024 |
N-OPA [mg L−1] | 93.11 b ± 28.02 | 92.11 b ± 11.87 | 94.88 ab ± 11.62 | 103.56 a ± 12.09 | 93.22 b ± 8.48 | p < 0.001 | p = 0.0108 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schäfer, J.; Friedel, M.; Molitor, D.; Stoll, M. Semi-Minimal-Pruned Hedge (SMPH) as a Climate Change Adaptation Strategy: Impact of Different Yield Regulation Approaches on Vegetative and Generative Development, Maturity Progress and Grape Quality in Riesling. Appl. Sci. 2021, 11, 3304. https://doi.org/10.3390/app11083304
Schäfer J, Friedel M, Molitor D, Stoll M. Semi-Minimal-Pruned Hedge (SMPH) as a Climate Change Adaptation Strategy: Impact of Different Yield Regulation Approaches on Vegetative and Generative Development, Maturity Progress and Grape Quality in Riesling. Applied Sciences. 2021; 11(8):3304. https://doi.org/10.3390/app11083304
Chicago/Turabian StyleSchäfer, Jan, Matthias Friedel, Daniel Molitor, and Manfred Stoll. 2021. "Semi-Minimal-Pruned Hedge (SMPH) as a Climate Change Adaptation Strategy: Impact of Different Yield Regulation Approaches on Vegetative and Generative Development, Maturity Progress and Grape Quality in Riesling" Applied Sciences 11, no. 8: 3304. https://doi.org/10.3390/app11083304
APA StyleSchäfer, J., Friedel, M., Molitor, D., & Stoll, M. (2021). Semi-Minimal-Pruned Hedge (SMPH) as a Climate Change Adaptation Strategy: Impact of Different Yield Regulation Approaches on Vegetative and Generative Development, Maturity Progress and Grape Quality in Riesling. Applied Sciences, 11(8), 3304. https://doi.org/10.3390/app11083304