Solid–Liquid Interface Temperature Measurement of Evaporating Droplet Using Thermoresponsive Polymer Aqueous Solution
Abstract
:1. Introduction
2. Experimental Approach
2.1. Experimental Setup
2.2. Development of Temperature Measurement Method Using pNIPAM Solution
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mampallil, D.; Eral, H.B. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 2018, 252, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Popov, Y.O. Evaporative deposition patterns: Spatial dimensions of the deposit. Phys. Rev. E 2005, 71, 036313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.H.; Lee, S.M.; Choi, C.K.; Lee, S.H. Modeling of the evaporation rate of liquid droplets on anodized heated surfaces. Int. Commun. Heat Mass Transf. 2018, 98, 209–215. [Google Scholar] [CrossRef]
- Dash, S.; Garimella, S.V. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis. Langmuir 2013, 29, 10785–10795. [Google Scholar] [CrossRef] [PubMed]
- Stauber, J.M.; Wilson, S.K.; Duffy, B.R.; Sefiane, K. Evaporation of droplets on strongly hydrophobic substrates. Langmuir 2015, 31, 3653–3660. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R.G. Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 2002, 106, 1334–1344. [Google Scholar] [CrossRef]
- Girard, F.; Antoni, M.; Faure, S.; Steinchen, A. Influence of heating temperature and relative humidity in the evaporation of pinned droplets. Colloids Surf. A Physicochem. Eng. Asp. 2008, 323, 36–49. [Google Scholar] [CrossRef]
- Dash, S.; Garimella, S.V. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces. Phys. Rev. E 2014, 89, 042402. [Google Scholar] [CrossRef] [Green Version]
- Sobac, B.; Brutin, D. Thermal effects of the substrate on water droplet evaporation. Phys. Rev. E 2012, 86, 021602. [Google Scholar] [CrossRef] [Green Version]
- Erbil, H.Y. Evaporation of pure liquid sessile and spherical suspended drops: A Review. Adv. Colloid Interface Sci. 2012, 170, 67–86. [Google Scholar] [CrossRef]
- Xu, X.; Ma, L. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach. Sci. Rep. 2015, 5, 8614. [Google Scholar] [CrossRef] [Green Version]
- Ristenpart, W.D.; Kim, P.G.; Domingues, C.; Wan, J.; Stone, H.A. Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 2007, 99, 234502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.C.; Bonaccurso, E.; Gambaryan-Roisman, T.; Stephan, P. Influence of the substrate thermal properties on sessile droplet evaporation: Effect of transient heat transport. Colloids Surf. A Physicochem. Eng. Asp. 2013, 432, 64–70. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.; Xu, X.; Luo, J. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets. Soft Matter 2015, 11, 5632–5640. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Kumar, R.; Basu, S. Infrared thermography and numerical study of vaporization characteristics of pure and blended bio-fuel droplets. Int. J. Heat Mass Transf. 2010, 53, 3862–3873. [Google Scholar] [CrossRef]
- Brutin, D.; Sobac, B.; Rigollet, F.; Le Niliot, C. Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface. Exp. Therm. Fluid Sci. 2011, 35, 521–530. [Google Scholar] [CrossRef]
- Tarozzi, L.; Muscio, A.; Tartarini, P. Experimental tests of dropwise cooling on infrared-transparent media. Exp. Therm. Fluid Sci. 2007, 31, 857–865. [Google Scholar] [CrossRef]
- Fabien, G.; Antoni, M.; Sefiane, K. Use of IR thermography to investigate heated droplet evaporation and contact line dynamics. Langmuir 2011, 27, 6744–6752. [Google Scholar] [CrossRef]
- Sodtke, C.; Ajaev, V.; Stephan, P. Evaporation of thin liquid droplets on heated surfaces. Heat Mass Transf. 2007, 43, 649–657. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, G.F. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.K.; Sharma, S.K.; Vasistha, P.; Mangalhara, J.P. Effect of ambient temperature on calibration of cooled thermal camera. Def. Sci. J. 2017, 67, 173. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, M.J.; Di Marco, P.; Robinson, A.J. Heat flux distribution beneath evaporating hydrophilic and superhydrophobic droplets. Int. J. Heat Mass Transf. 2020, 148, 119093. [Google Scholar] [CrossRef]
- Kuckling, D.; Harmon, M.E.; Frank, C.W. Photo-cross-linkable PNIPAAm copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers. Macromolecules 2002, 35, 6377–6383. [Google Scholar] [CrossRef]
- Philipp, M.; Müller, U.; Aleksandrova, R.; Sanctuary, R.; Müller-Buschbaum, P.; Krüger, J.K. On the elastic nature of the demixing transition of aqueous PNIPAM solutions. Soft Matter 2012, 8, 11387–11395. [Google Scholar] [CrossRef]
- Garner, B.W.; Cai, T.; Ghosh, S.; Hu, Z.; Neogi, A. Refractive index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics. Appl. Phys. Express 2009, 2, 057001. [Google Scholar] [CrossRef]
- Hasan, M.R.; Akter, S.; Rahman, M.S.; Ahmed, K. Design of a surface plasmon resonance refractive index sensor with high sensitivity. Opt. Eng. 2017, 56, 087101. [Google Scholar] [CrossRef]
- Brewster, M.Q. Thermal Radiative Transfer and Properties; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Kim, D.Y.; Jeong, C.H.; Lee, H.J.; Choi, C.K.; Lee, S.H. Modeling of the finite boundary limit of evaporation flux in the contact line region using the surface plasmon resonance imaging. Int. Commun. Heat Mass Transf. 2020, 116, 104598. [Google Scholar] [CrossRef]
- Jeong, C.H.; Shin, D.H.; Konduru, V.; Allen, J.S.; Choi, C.K.; Lee, S.H. Quantitative measurements of nanoscale thin frost layers using surface plasmon resonance imaging. Int. J. Heat Mass Transf. 2018, 124, 83–89. [Google Scholar] [CrossRef]
- Girard, F.; Antoni, M.; Sefiane, K. Infrared thermography investigation of an evaporating sessile water droplet on heated substrates. Langmuir 2010, 26, 4576–4580. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Contact line deposits in an evaporating drop. Phys. Rev. E 2000, 62, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, C.H.; Lee, H.J.; Kim, D.Y.; Ahangar, S.B.; Choi, C.K.; Lee, S.H. Quantitative analysis of contact line behaviors of evaporating binary mixture droplets using surface plasmon resonance imaging. Int. J. Heat Mass Transf. 2021, 165, 12690. [Google Scholar] [CrossRef]
- Xu, X.; Luo, J. Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 2007, 91, 124102. [Google Scholar] [CrossRef]
Temperature (°C) | Refractive Index |
---|---|
21.1 ± 0.2 | 1.3549 |
24.3 ± 0.2 | 1.3549 |
26.1 ± 0.1 | 1.3557 |
27.5 ± 0.2 | 1.3573 |
28.2 ± 0.2 | 1.3580 |
28.8 ± 0.2 | 1.3595 |
29.3 ± 0.2 | 1.3610 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.J.; Jeong, C.H.; Kim, D.Y.; Choi, C.K.; Lee, S.H. Solid–Liquid Interface Temperature Measurement of Evaporating Droplet Using Thermoresponsive Polymer Aqueous Solution. Appl. Sci. 2021, 11, 3379. https://doi.org/10.3390/app11083379
Lee HJ, Jeong CH, Kim DY, Choi CK, Lee SH. Solid–Liquid Interface Temperature Measurement of Evaporating Droplet Using Thermoresponsive Polymer Aqueous Solution. Applied Sciences. 2021; 11(8):3379. https://doi.org/10.3390/app11083379
Chicago/Turabian StyleLee, Hyung Ju, Chan Ho Jeong, Dae Yun Kim, Chang Kyoung Choi, and Seong Hyuk Lee. 2021. "Solid–Liquid Interface Temperature Measurement of Evaporating Droplet Using Thermoresponsive Polymer Aqueous Solution" Applied Sciences 11, no. 8: 3379. https://doi.org/10.3390/app11083379
APA StyleLee, H. J., Jeong, C. H., Kim, D. Y., Choi, C. K., & Lee, S. H. (2021). Solid–Liquid Interface Temperature Measurement of Evaporating Droplet Using Thermoresponsive Polymer Aqueous Solution. Applied Sciences, 11(8), 3379. https://doi.org/10.3390/app11083379