Phonons and Thermal Transport in Si/SiO2 Multishell Nanotubes: Atomistic Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Theoretical Model of Thermal Conductivity in Si/SiO2 Multishell Nanotubes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balandin, A.A. Nanoscale Thermal Management. IEEE Potentials 2002, 21, 11–15. [Google Scholar] [CrossRef]
- Bar-Cohen, A.; Wang, P. On-chip thermal management and hot-spot remediation. In Nano-Bio-Electronic, Photonic and MEMS Packaging; Springer: Boston, MA, USA, 2010; pp. 349–429. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.G.; Lee, H.; Wang, D.Z.; Ren, Z.F.; Fleurial, J.-P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Cahill, D.G.; Ford, W.K.; Goodson, K.E.; Mahan, G.D.; Majumdar, A.; Maris, H.J.; Merlin, R.; Phillpot, S.R. Nanoscale Thermal Transport. J. Appl. Phys. 2003, 93, 793–818. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A.; Nika, D.L. Phononics in Low-Dimensional Materials. Mater. Today 2012, 15, 266–275. [Google Scholar] [CrossRef]
- Nika, D.L.; Pokatilov, E.P.; Askerov, A.S.; Balandin, A.A. Phonon Thermal Conduction in Graphene: Role of Umklapp and Edge Roughness Scattering. Phys. Rev. B 2009, 79, 155413. [Google Scholar] [CrossRef] [Green Version]
- Kundu, A.; Mingo, N.; Broido, D.A.; Stewart, D.A. Role of Light and Heavy Embedded Nanoparticles on the Thermal Conductivity of SiGe Alloys. Phys. Rev. B 2011, 84, 125426. [Google Scholar] [CrossRef] [Green Version]
- Nika, D.L.; Pokatilov, E.P.; Balandin, A.A.; Fomin, V.M.; Rastelli, A.; Schmidt, O.G. Reduction of Lattice Thermal Conductivity in One-Dimensional Quantum-Dot Superlattices Due to Phonon Filtering. Phys. Rev. B 2011, 84, 165415. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A. Nanophononics: Phonon Engineering in Nanostructures and Nanodevices. J. Nanosci. Nanotechnol. 2005, 5, 1015–1022. [Google Scholar] [CrossRef]
- Cocemasov, A.I.; Isacova, C.I.; Nika, D.L. Thermal Transport in Semiconductor Nanostructures, Graphene, and Related Two-Dimensional Materials. Chin. Phys. B 2018, 27, 56301. [Google Scholar] [CrossRef] [Green Version]
- Safavi-Naeini, A.H.; Van Thourhout, D.; Baets, R.; Van Laer, R. Controlling Phonons and Photons at the Wavelength Scale: Integrated Photonics Meets Integrated Phononics. Optica 2019, 6, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Nika, D.L.; Pokatilov, E.P.; Fomin, V.M.; Devreese, J.T.; Tempere, J. Resonant Terahertz Light Absorption by Virtue of Tunable Hybrid Interface Phonon–Plasmon Modes in Semiconductor Nanoshells. Appl. Sci. 2019, 9, 1442. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Bao, W.; Nika, D.L.; Subrina, S.; Pokatilov, E.P.; Lau, C.N.; Balandin, A.A. Dimensional Crossover of Thermal Transport in Few-Layer Graphene. Nat. Mater. 2010, 9, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandin, A.A. High-Temperature Quenching of Electrical Resistance in Graphene Interconnects. Appl. Phys. Lett. 2008, 92, 202108. [Google Scholar] [CrossRef] [Green Version]
- Horng, R.-H.; Lin, R.-C.; Hu, H.-L.; Peng, K.-C.; Hsu, C.-P. Diamond-Added-Copper Heat Spreader for UV LED Applications. Electrochem. Solid State Lett. 2011, 14, H453. [Google Scholar] [CrossRef]
- Ko, G.; Kim, J. Semiconductor Devices, Materials, and Processing-Thermal Modeling of Graphene Layer on the Peak Channel Temperature of AlGaN/GaN High Electron Mobility Transistors. IEEE-ECS Electrochem. Solid State Lett. 2009, 12, H29. [Google Scholar] [CrossRef]
- Balandin, A.; Wang, K.L. Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well. Phys. Rev. B 1998, 58, 1544. [Google Scholar] [CrossRef] [Green Version]
- Colvard, C.; Gant, T.A.; Klein, M.V.; Merlin, R.; Fischer, R.; Morkoc, H.; Gossard, A.C. Folded Acoustic and Quantized Optic Phonons in (GaAl) As Superlattices. Phys. Rev. B 1985, 31, 2080. [Google Scholar] [CrossRef]
- Balandin, A.A.; Pokatilov, E.P.; Nika, D.L. Phonon Engineering in Hetero-and Nanostructures. J. Nanoelectron. Optoelectron. 2007, 2, 140–170. [Google Scholar] [CrossRef]
- Venkatasubramanian, R. Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures. Phys. Rev. B 2000, 61, 3091. [Google Scholar] [CrossRef]
- Pokatilov, E.P.; Nika, D.L.; Balandin, A.A. Acoustic-Phonon Propagation in Rectangular Semiconductor Nanowires with Elastically Dissimilar Barriers. Phys. Rev. B 2005, 72, 113311. [Google Scholar] [CrossRef] [Green Version]
- Mingo, N. Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations. Phys. Rev. B 2003, 68, 113308. [Google Scholar] [CrossRef] [Green Version]
- Pokatilov, E.P.; Nika, D.L.; Balandin, A.A. Acoustic Phonon Engineering in Coated Cylindrical Nanowires. Superlattices Microstruct. 2005, 38, 168–183. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B 1993, 47, 12727. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.; Gmelin, E. Transport Properties of Silicon. Appl. Phys. A 1991, 53, 136–140. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced Thermoelectric Performance of Rough Silicon Nanowires. Nature 2008, 451, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Boukai, A.I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.-K.; Goddard, W.A.; Heath, J.R. Silicon nanowires as efficient thermoelectric materials. In Materials for Sustainable Energy; Dusastre, V., Ed.; Macmillan Publishers Ltd.: London, UK; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2010; pp. 116–119. ISBN 978-981-4317-64-1. [Google Scholar]
- Nika, D.L.; Cocemasov, A.I.; Isacova, C.I.; Balandin, A.A.; Fomin, V.M.; Schmidt, O.G. Suppression of Phonon Heat Conduction in Cross-Section-Modulated Nanowires. Phys. Rev. B 2012, 85, 205439. [Google Scholar] [CrossRef] [Green Version]
- Nika, D.L.; Cocemasov, A.I.; Crismari, D.V.; Balandin, A.A. Thermal Conductivity Inhibition in Phonon Engineered Core-Shell Cross-Section Modulated Si/Ge Nanowires. Appl. Phys. Lett. 2013, 102, 213109. [Google Scholar] [CrossRef] [Green Version]
- Cocemasov, A.I.; Nika, D.L.; Fomin, V.M.; Grimm, D.; Schmidt, O.G. Phonon-Engineered Thermal Transport in Si Wires with Constant and Periodically Modulated Cross-Sections: A Crossover between Nano- and Microscale Regimes. Appl. Phys. Lett. 2015, 107, 011904. [Google Scholar] [CrossRef]
- Melis, C.; Colombo, L. Lattice Thermal Conductivity of Si1-xGex Nanocomposites. Phys. Rev. Lett. 2014, 112, 065901. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, G.; Li, B. Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes. Nano Lett. 2010, 10, 3978–3983. [Google Scholar] [CrossRef] [Green Version]
- Morata, A.; Pacios, M.; Gadea, G.; Flox, C.; Cadavid, D.; Cabot, A.; Tarancón, A. Large-Area and Adaptable Electrospun Silicon-Based Thermoelectric Nanomaterials with High Energy Conversion Efficiencies. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Yang, J.; Zhou, J.; Gu, D.; Xiao, W. Template-Free Electrochemical Formation of Silicon Nanotubes from Silica. Adv. Sci. 2020, 7, 2001492. [Google Scholar] [CrossRef]
- Tseng, Y.M.; Gu, R.Y.; Cheng, S.L. Design and Fabrication of Vertically Aligned Single-Crystalline Si Nanotube Arrays and Their Enhanced Broadband Absorption Properties. Appl. Surf. Sci. 2020, 508, 145223. [Google Scholar] [CrossRef]
- Sun, Y.-L.; Zheng, X.-D.; Jevasuwan, W.; Fukata, N. Silicon Nanotubes Fabricated by Wet Chemical Etching of ZnO/Si Core–Shell Nanowires. Nanomaterials 2020, 10, 2535. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Shen, C.; Dong, Y.; Qin, J.; Wang, Q.; Iocozzia, J.; Zhao, S.; Yuan, K.; Han, C.; Li, B. Sandwich-like CNTs/Si/C Nanotubes as High Performance Anode Materials for Lithium-Ion Batteries. J. Mater. Chem. A 2018, 6, 14797–14804. [Google Scholar] [CrossRef]
- Jafari, M.A.; Kordbacheh, A.A.; Mahdian, S.; Ghasemi, N. Electronic and Transport Properties of (6, 2) Carbon and Silicon Nanotubes: A First-Principles Calculation. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 117, 113855. [Google Scholar] [CrossRef]
- Scarlet, S.P.; Vinodhkumar, N.; Srinivasan, R. Performance Enhancement of Junctionless Silicon Nanotube FETs Using Gate and Dielectric Engineering. J. Comput. Electron. 2021, 20, 209–217. [Google Scholar] [CrossRef]
- Fomin, V.M. Self-Rolled Micro-and Nanoarchitectures: Topological and Geometrical Effects; Walter de Gruyter GmbH & Co KG: Berlin, Germany; Boston, MA, USA, 2021; ISBN 978-3-11-057557-6. [Google Scholar]
- Grimm, D.; Wilson, R.B.; Teshome, B.; Gorantla, S.; Rümmeli, M.H.; Bublat, T.; Zallo, E.; Li, G.; Cahill, D.G.; Schmidt, O.G. Thermal Conductivity of Mechanically Joined Semiconducting/Metal Nanomembrane Superlattices. Nano Lett. 2014, 14, 2387–2393. [Google Scholar] [CrossRef]
- Li, G.; Grimm, D.; Engemaier, V.; Lösch, S.; Manga, K.; Bandari, V.K.; Zhu, F.; Schmidt, O.G. Hybrid Semiconductor/Metal Nanomembrane Superlattices for Thermoelectric Application. Phys. Status Solidi A 2016, 213, 620–625. [Google Scholar] [CrossRef]
- Li, G.; Yarali, M.; Cocemasov, A.; Baunack, S.; Nika, D.L.; Fomin, V.M.; Singh, S.; Gemming, T.; Zhu, F.; Mavrokefalos, A. In-Plane Thermal Conductivity of Radial and Planar Si/SiOx Hybrid Nanomembrane Superlattices. ACS Nano 2017, 11, 8215–8222. [Google Scholar] [CrossRef]
- Fomin, V.M.; Balandin, A.A. Phonon Spectrum Engineering in Rolled-up Micro-and Nano-Architectures. Appl. Sci. 2015, 5, 728–746. [Google Scholar] [CrossRef] [Green Version]
- Dippong, T.; Cadar, O.; Levei, E.A.; Deac, I.G.; Goga, F.; Borodi, G.; Barbu-Tudoran, L. Influence of Polyol Structure and Molecular Weight on the Shape and Properties of Ni0.5Co0.5Fe2O4 Nanoparticles Obtained by Sol-Gel Synthesis. Ceram. Int. 2019, 45, 7458–7467. [Google Scholar] [CrossRef]
- Dippong, T.; Cadar, O.; Levei, E.A.; Deac, I.G. Microstructure, Porosity and Magnetic Properties of Zn0.5Co0.5Fe2O4/SiO2 Nanocomposites Prepared by Sol-Gel Method Using Different Polyols. J. Magn. Magn. Mater. 2020, 498, 166168. [Google Scholar] [CrossRef]
- Agati, M.; Boninelli, S.; Castrucci, P.; Amiard, G.; Pandiyan, R.; Kolhatkar, G.; Dolbec, R.; Ruediger, A.; El Khakani, M.A. Formation of Silicon Nanocrystal Chains Induced via Rayleigh Instability in Ultrathin Si/SiO2 Core/Shell Nanowires Synthesized by an Inductively Coupled Plasma Torch Process. J. Phys. Mater. 2018, 2, 15001. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, R.; Han, L.; Luo, F.; Chen, X.; Wang, J.; Qian, Q.; Chen, Q.; Wei, M. Preparation of a Si/SiO2–Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries. Chem. Eur. J. 2018, 24, 4841–4848. [Google Scholar] [CrossRef] [PubMed]
- Osminkina, L.A.; Žukovskaja, O.; Agafilushkina, S.N.; Kaniukov, E.; Stranik, O.; Gonchar, K.A.; Yakimchuk, D.; Bundyukova, V.; Chermoshentsev, D.A.; Dyakov, S.A. Gold Nanoflowers Grown in a Porous Si/SiO2 Matrix: The Fabrication Process and Plasmonic Properties. Appl. Surf. Sci. 2020, 507, 144989. [Google Scholar] [CrossRef]
- Du, M.; Bi, J.-Q.; Wang, W.-L.; Sun, X.-L.; Long, N.-N. Microstructure and Properties of SiO2 Matrix Reinforced by BN Nanotubes and Nanoparticles. J. Alloys Compd. 2011, 509, 9996–10002. [Google Scholar] [CrossRef]
- Anufriev, R.; Tachikawa, S.; Gluchko, S.; Nakayama, Y.; Kawamura, T.; Jalabert, L.; Nomura, M. Cross-Plane Thermal Conductivity in Amorphous Si/SiO2 Superlattices. Appl. Phys. Lett. 2020, 117, 093103. [Google Scholar] [CrossRef]
- Nika, D.L.; Zincenco, N.D.; Pokatilov, E.P. Lattice Thermal Conductivity of Ultra-Thin Freestanding Layers: Face-Centered Cubic Cell Model versus Continuum Approach. J. Nanoelectron. Optoelectron. 2009, 4, 170–173. [Google Scholar] [CrossRef]
- Volz, S.G.; Chen, G. Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires. Appl. Phys. Lett. 1999, 75, 2056–2058. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point. Phys. Rev. 1964, 134, A1058. [Google Scholar] [CrossRef]
- Allen, P.B.; Feldman, J.L. Thermal Conductivity of Glasses: Theory and Application to Amorphous Si. Phys. Rev. Lett. 1989, 62, 645. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Bai, Z.; Bischof, C.; Blackford, L.S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A. LAPACK Users’ Guide; SIAM: Philadelphia, PA, USA, 1999; ISBN 0-89871-447-8. [Google Scholar]
- GNU C Compiler; Free Software Foundation: Boston, MA, USA, 2020.
- Nishiguchi, N.; Ando, Y.; Wybourne, M.N. Acoustic Phonon Modes of Rectangular Quantum Wires. J. Phys. Condens. Matter 1997, 9, 5751. [Google Scholar] [CrossRef]
- Zou, J.; Balandin, A. Phonon Heat Conduction in a Semiconductor Nanowire. J. Appl. Phys. 2001, 89, 2932–2938. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.; Aksamija, Z.; Pop, E.; Ravaioli, U. Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires. Phys. Rev. Lett. 2009, 102, 125503. [Google Scholar] [CrossRef]
- Cocemasov, A.I.; Nika, D.L. Phonons and Phonon Thermal Conductivity in Silicon Nanolayers. J. Nanoelectron. Optoelectron. 2012, 7, 370–375. [Google Scholar] [CrossRef]
- Fauziah, K.; Suzuki, Y.; Nogita, T.; Kamakura, Y.; Watanabe, T.; Salleh, F.; Ikeda, H. Effect of Phonon-Boundary Scattering on Phonon-Drag Factor in Seebeck Coefficient of Si Wire. AIP Adv. 2020, 10, 75015. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isacova, C.; Cocemasov, A.; Nika, D.L.; Fomin, V.M. Phonons and Thermal Transport in Si/SiO2 Multishell Nanotubes: Atomistic Study. Appl. Sci. 2021, 11, 3419. https://doi.org/10.3390/app11083419
Isacova C, Cocemasov A, Nika DL, Fomin VM. Phonons and Thermal Transport in Si/SiO2 Multishell Nanotubes: Atomistic Study. Applied Sciences. 2021; 11(8):3419. https://doi.org/10.3390/app11083419
Chicago/Turabian StyleIsacova, Calina, Alexandr Cocemasov, Denis L. Nika, and Vladimir M. Fomin. 2021. "Phonons and Thermal Transport in Si/SiO2 Multishell Nanotubes: Atomistic Study" Applied Sciences 11, no. 8: 3419. https://doi.org/10.3390/app11083419
APA StyleIsacova, C., Cocemasov, A., Nika, D. L., & Fomin, V. M. (2021). Phonons and Thermal Transport in Si/SiO2 Multishell Nanotubes: Atomistic Study. Applied Sciences, 11(8), 3419. https://doi.org/10.3390/app11083419