A Boundary Zone Method for the Generation of Multivariate Representative Humanoids
Abstract
:1. Introduction
2. Development of a Boundary Zone Method (BZM)
2.1. Step 1: Formation of a Boundary Zone (BZ)
2.2. Step 2. Clustering of Anthropometric Cases in the BZ
2.3. Step 3. Selection of Representative Anthropometric Cases
3. Evaluation Methodology
3.1. Anthropometric Data
3.2. Performance Measures
3.3. Evaluation Programs
4. Evaluation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, K.; Kwon, O.; You, H. Evaluation of the multivariate accommodation performance of the grid method. Appl. Ergon. 2010, 42, 156–161. [Google Scholar] [CrossRef] [PubMed]
- HFES 300 Committee: Guidelines for Using Anthropometric Data in Product Design; Human Factors and Ergonomics Society: Washington, WA, USA, 2004.
- Jung, K.; Lee, B.; You, H. Development and Application of an Anthropometric Design Method Considering Physical Human Variabilities. IE Interfaces 2011, 24, 420–447. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Kwon, O.; You, H. Development of the boundary zone method for generation of representative human models. In Proceedings of the Human Factors and Ergonomics Society 53rd Annual Meeting, San Antonio, TX, USA, 19–23 October 2009. [Google Scholar]
- You, H.; Bucciaglia, J.; Lowe, B.D.; Gilmore, B.J.; Freivalds, A. An ergonomic design process for a US transit bus operator workstation. Int. J. Heavy Veh. Syst. 1997, 4, 91–107. [Google Scholar]
- Porter, J.M.; Case, K.; Marshall, R.; Gyi, D.; Oliver, R.S. Beyond Jack and Jill: Designing for individuals using HADRIAN. Int. J. Ind. Ergon. 2004, 33, 249–264. [Google Scholar] [CrossRef]
- Roebuck, J.A.; Kroemer, K.H.E.; Thomson, W.G. Engineering Anthropometry Methods; Wiley-Interscience: Newyork, NY, USA, 1975. [Google Scholar]
- Bittner, A.C. A-CADRE: Advanced family of manikins for workstation design. In Proceedings of the IEA 2000/HFES 2000 Congress, San Diego, CA, USA, 30 July–4 August 2000; pp. 774–777. [Google Scholar]
- Bittner, A.C.; Glenn, F.A.; Harris, R.M.; Iavecchia, H.P.; Wherry, R.J. Cadre: A family of manikins for workstation design. In Trends in Ergonomics/Human Factors; Asfour, S.S., Ed.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 733–740. [Google Scholar]
- Kim, J.; Whang, M. Development of a set of Korean manikins. Appl. Ergon. 1997, 28, 407–410. [Google Scholar] [CrossRef]
- Kuo, C.; Wang, M.; Lu, J. Developing sizing systems using 3D scanning head anthropometric data. Measurement 2020, 152, 107264. [Google Scholar] [CrossRef]
- Luximon, A.; Jiang, L.; Kuximon, Y. Sizing and grading methods with consideration of footwear styles. Int. J. Ind. Ergon. 2020, 78, 102960. [Google Scholar] [CrossRef]
- Hsiao, H. Anthropometric Procedures for Protective Equipment Sizing and Design. Hum. Factors J. Hum. Factors Ergon. Soc. 2013, 55, 6–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arichabala, J.; Cordova, X.M.; Gargia, G.; Mendieta, G.R. Using a multivariate accommodation model to study a mixed population. In Proceedings of the 2nd Annual World Conference of the Society for Industrial and Systems Engineering, Las Vegas, NV, USA, 16–18 September 2013. [Google Scholar]
- Meindl, R.S.; Hudson, J.A.; Zehner, G.F. A Multivariate Anthropometric Method for Crew Station Design (AL-TR-1993-0054); Wright-Patterson Air Force Base: Wright-Patterson AFB, OH, USA, 1993. [Google Scholar]
- Brolin, E. Anthropometric Diversity and Consideration of Human Capabilities. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2016. [Google Scholar]
- Hsiao, H.; Whitestone, J.; Bradtmiller, B.; Whisler, R.; Zwiener, J.; Lafferty, C.; Gross, M. Anthropometric criteria for the design of tractor cabs and protection frames. Ergonomics 2005, 48, 323–353. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.A.; Zehner, G.F.; Robinette, K.M. JSF CAESAR: Construction of a 3-D Anthropometric Sample for Design and Sizing of Joint Strike Fighter Pilot Clothing and Protective Equipment (AFRL-HE-WP-TR-2003-0142); Wright-Patterson Air Force Base: Wright-Patterson AFB, OH, USA, 2003. [Google Scholar]
- Hudson, J.A.; Zehner, G.F.; Parakkat, J.; Choi, H.J. A Methodology for Evaluating Advanced Operator Workstation Accommodation (AFRL-HE-WP-TR-2007-0016); Wright-Patterson Air Force Base: Wright-Patterson AFB, OH, USA, 2006. [Google Scholar]
- Meunier, P. Effects of a data reduction technique on anthropometric accommodation. In Proceedings of the 42nd Human Factors and Ergonomics Society, Chicago, IL, USA, 5–9 October 1998; pp. 727–731. [Google Scholar]
- ANSI/HFES 100: Human Factors Engineering of Computer Workstations; Human Factors and Ergonomics Society: Santa Monica, CA, USA, 2007.
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Jung, K.; Kwon, O.; You, H. Development of a digital human model generation method for ergonomic design in virtual environment. Int. J. Ind. Ergon. 2009, 39, 744–748. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: Hoboken, NJ, USA, 1988. [Google Scholar]
- Lattin, J.M.; Carroll, J.D.; Green, P.E. Analyzing Multivariate Data; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2003. [Google Scholar]
- Gordon, C.C.; Bradtmiller, B.; Churchill, T.; Clauser, C.; McConville, J.; Tebbetts, I.; Walker, R. 1988 Anthropometric Survey of U.S. Army Personnel; Anthropology Research Project: Yellow Springs, OH, USA, 1988. [Google Scholar]
- Hamerly, G.; Elkan, C. Alternatives to the k-means algorithm that find better clusterings. In Proceedings of the 11th International Conference on Information and Knowledge Management, McLean, VA, USA, 4–9 November 2002. [Google Scholar]
- Vasu, M.; Mital, A. Evaluation of the validity of anthropometric design assumptions. Int. J. Ind. Ergon. 2000, 26, 19–37. [Google Scholar] [CrossRef]
Study | Generation Method | Number of Dimensions | Number of Factors (or Principal Components) | Percentage of Variance Explained (%) | Number of RHs |
---|---|---|---|---|---|
Bittner et al. [9] | SM | 19 | 4 | 75.0 | 17 |
Bittner [8] | SM | 19 | 4 | N.S. * | 17 |
Kim and Whang [10] | RM | 25 | 3 | 62.7 | 9 |
Brolin [16] | CM | 3 | 2 | 97.0 | 6 |
Arichabala et al. [14] | CM | 9 | 4 | 77.0~80.0 | N.S. |
Hsiao [13] | CM | 11 | 3 | 84.0~86.0 | 15 |
Hsiao et al. [17] | CM | 13 | 3 | 81.5 | 15 |
Hudson et al. [18] | CM | 6 | 2 | 90.0 | 8 |
Hudson et al. [19] | CM | 14 | 3 | 77.1 | 14 |
CM | 14 | 3 | 79.3 | 14 | |
Meindl et al. [15] | CM | 6 | 2 | 85.0 | 8 |
CM | 11 | 3 | 61.0 | 14 | |
Meunier [20] | CM | 6 | 2 | 89.0 | 8 |
Generation Method | Number of Factors/Principal Components | Percentage of Variance Explained (%) | Number of RHs | Multivariate Accommodation Percentage (%) | Outlier Percent (%) | Normalized Outlier Magnitude (%) | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Max | ||||||
SM | 2 | 72 | 5 | 18 | 0 | - | - | - |
3 | 83 | 9 | 43 | 0 | - | - | - | |
4 | 90 | 17 | 60 | 0 | - | - | - | |
5 | 94 | 33 | 69 | 0 | - | - | - | |
6 | 96 | 65 | 72 | 1.5 | 0.3 | - | 0.3 | |
RM | 2 | 72 | 5 | 62 | 0 | - | - | - |
3 | 83 | 9 | 93 | 11.1 | 4.7 | 6.0 | 9.0 | |
4 | 90 | 17 | 98 | 35.3 | 2.5 | 3.1 | 11.1 | |
5 | 94 | 33 | 99 | 45.5 | 4.1 | 4.7 | 20.1 | |
6 | 96 | 65 | 99 | 26.2 | 4.5 | 4.9 | 24.8 | |
CM | 2 | 72 | 9 | 62 | 0 | - | - | - |
3 | 83 | 19 | 81 | 0 | - | - | - | |
4 | 90 | 33 | 84 | 12.1 | 2.7 | 3.7 | 8.2 | |
5 | 94 | 51 | 87 | 25.5 | 2.0 | 2.9 | 8.7 | |
6 | 96 | 73 | 92 | 15.1 | 2.2 | 2.6 | 9.0 | |
BZM * | - | - | 44 ± 2 | 90.6 ± 0.7 | 0 | - | - | - |
Anthropometric Dimension | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
Popliteal height | 0.96 | 0.09 | −0.07 |
Knee height | 0.96 | −0.14 | −0.06 |
Foot length | 0.89 | −0.08 | −0.21 |
Buttock–knee length | 0.86 | −0.41 | 0.16 |
Buttock–popliteal length | 0.84 | −0.34 | 0.28 |
Forearm-to-forearm breadth | 0.55 | −0.43 | −0.53 |
Hip breadth | −0.10 | −0.88 | 0.08 |
Abdominal extension depth | 0.24 | −0.79 | −0.25 |
Thigh clearance | 0.39 | −0.70 | −0.26 |
Elbow rest height | −0.09 | −0.11 | −0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, K.; Choi, Y.; Lee, B.; You, H.; Kwon, O. A Boundary Zone Method for the Generation of Multivariate Representative Humanoids. Appl. Sci. 2021, 11, 3440. https://doi.org/10.3390/app11083440
Jung K, Choi Y, Lee B, You H, Kwon O. A Boundary Zone Method for the Generation of Multivariate Representative Humanoids. Applied Sciences. 2021; 11(8):3440. https://doi.org/10.3390/app11083440
Chicago/Turabian StyleJung, Kihyo, Younggeun Choi, Baekhee Lee, Heecheon You, and Ochae Kwon. 2021. "A Boundary Zone Method for the Generation of Multivariate Representative Humanoids" Applied Sciences 11, no. 8: 3440. https://doi.org/10.3390/app11083440
APA StyleJung, K., Choi, Y., Lee, B., You, H., & Kwon, O. (2021). A Boundary Zone Method for the Generation of Multivariate Representative Humanoids. Applied Sciences, 11(8), 3440. https://doi.org/10.3390/app11083440