A Deep Learning Approach to Predict Autism Spectrum Disorder Using Multisite Resting-State fMRI
Abstract
:1. Introduction
1.1. Autism Detection Using Structural MRI Data
1.2. Autism Detection Using Resting-State Functional MRI Data
- Achieved maximum accuracy of 88% using only resting-state functional MRI (rs-fMRI) data.
- Reached the conclusion that the Bootstrap Analysis of Stable Clusters (BASC) atlas using 122 ROIs yield a higher predictive power than other predefined atlases from comparative analysis.
2. Proposed Approach
2.1. Preprocessing
2.2. Time-Series Extraction from ROIs Using Brain Atlas
2.2.1. Selection of Predefined Atlases
- (i)
- AAL—Automated Anatomical Labelling:
- (ii)
- BASC—Bootstrap Analysis of Stable ClustersThis multiscale functional brain parcellation atlas was generated from rs-fMRI images using a method called bootstrap analysis of stable clusters in [46]. It consists of a different number of ROIs {36, 64, 122, 197, 325, 444}. The BASC atlas with 122 ROIs was utilized in this study which is represented in Figure 3 using continuous colors.
- (iii)
- CC200—Craddock 200The CC200 functional brain parcellation atlas was generated by normalized cut spectral clustering of the entire brain into 200 spatially-constrained regions of homogeneous functional activity by Craddock et al. [47].
- (iv)
- PowerPower atlas comprising 264 ROIs was defined by local graph-connectivity by Power et al. [48].All the images used in this section were generated by the Nilearn Python library [49].
2.2.2. Mean Timeseries Extraction of ROIs from 4D fMRI Brain Volume
2.3. Building Functional Connectivity Matrix
2.4. Transforming 2D Functional Connectivity Matrix to 1D Feature Vector
2.5. Classification Using a Deep Neural Network Classifier
3. Experimental Results and Discussion
3.1. ABIDE Dataset Description
3.2. Data Partitioning Using Stratified 5-Fold Cross-Validation
3.3. Performance Evaluation Using Different Atlas
3.3.1. CC200 Atlas
3.3.2. Power Atlas
3.3.3. BASC Atlas
3.3.4. AAL Atlas
3.4. Performance Comparison among Atlases
- BASC atlas provided superior performance in terms of accuracy, sensitivity, F1, and AUC score using the proposed Model-2.
- AAL showed inconsistent results among various metrics. It had the lowest sensitivity value, which is very crucial and significant in medical diagnosis.
- CC200 and Power atlas depicted the lowest predictive power based on its performance value across all measures.
3.5. Performance Comparison Using BASC Atlas and Single-Site Data
3.6. Performance Comparison with Machine Learning Methods
3.7. Performance Comparison with Existing Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elsabbagh, M.; Divan, G.; Koh, Y.; Kim, Y.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.; Wang, C.; et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Autism Spectrum Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders (accessed on 13 February 2021).
- Gotham, K.; Pickles, A.; Lord, C. Trajectories of autism severity in children using standardized ados scores. Pedriatics 2012, 130, e1278–e1284. [Google Scholar] [CrossRef] [Green Version]
- Szatmari, P.; Georgiades, S.; Duku, E.; Bennett, T.; Bryson, S.; Fombonne, E.; Mirenda, P.; Roberts, W.; Smith, I.; Vaillancourt, T.; et al. Developmental trajectories of symptom severity and adaptive functioning in an inception cohort of preschool children with autism spectrum disorder. JAMA Psychiatry 2015, 72, 276. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Rutter, M.; Goode, S.; Heemsbergen, J.; Jordan, H.; Mawhood, L.; Schopler, E. Austism diagnostic observation schedule: A standardized observation of communicative and social behavior. J. Autism Dev. Disord. 1989, 19, 185–212. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Rutter, M.; Le Couteur, A. Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef]
- Leo, M.; Carcagnì, P.; Distante, C.; Mazzeo, P.L.; Spagnolo, P.; Levante, A.; Petrocchi, S.; Lecciso, F. Computational analysis of deep visual data for quantifying facial expression production. Appl. Sci. 2019, 9, 4542. [Google Scholar]
- Han, J.; Li, Y.; Kang, J.; Cai, E.; Tong, Z.; Ouyang, G.; Li, X. Global synchronization of multichannel eeg based on rényi entropy in children with autism spectrum disorder. Appl. Sci. 2017, 7, 257. [Google Scholar]
- Liu, X.; Wu, Q.; Zhao, W.; Luo, X. Technology-facilitated diagnosis and treatment of individuals with autism spectrum disorder: An engineering perspective. Appl. Sci. 2017, 7, 1051. [Google Scholar]
- Johnston, D.; Egermann, H.; Kearney, G. SoundFields: A virtual reality game designed to address auditory hypersensitivity in individuals with autism spectrum disorder. Appl. Sci. 2020, 10, 2996. [Google Scholar] [CrossRef]
- Johnston, D.; Egermann, H.; Kearney, G. Measuring the behavioral response to spatial audio within a multi-modal virtual reality environment in children with autism spectrum disorder. Appl. Sci. 2019, 9, 3152. [Google Scholar] [CrossRef] [Green Version]
- Magrini, M.; Curzio, O.; Carboni, A.; Moroni, D.; Salvetti, O.; Melani, A. Augmented interaction systems for supporting autistic children. evolution of a multichannel expressive tool: The SEMI project feasibility study. Appl. Sci. 2019, 9, 3081. [Google Scholar] [CrossRef] [Green Version]
- Garrity, A.; Pearlson, G.; McKiernan, K.; Lloyd, D.; Kiehl, K.; Calhoun, V. Aberrant “Default Mode” Functional connectivity in schizophrenia. Am. J. Psychiatry 2007, 164, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liang, M.; Tian, L.; Wang, K.; Hao, Y.; Liu, H.; Liu, Z.; Jiang, T. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr. Res. 2007, 97, 194–205. [Google Scholar]
- Jafri, M.J.; Pearlson, G.D.; Stevens, M.; Calhoun, V.D. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage 2008, 39, 1666–1681. [Google Scholar] [CrossRef] [Green Version]
- Calhoun, V.; Sui, J.; Kiehl, K.; Turner, J.; Allen, E.; Pearlson, G. Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder. Front. Psychiatry 2012, 2, 75. [Google Scholar] [CrossRef] [Green Version]
- Craddock, R.; Holtzheimer, P.; Hu, X.; Mayberg, H. Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 2009, 62, 1619–1628. [Google Scholar] [CrossRef] [Green Version]
- Plitt, M.; Barnes, K.; Martin, A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage: Clin. 2015, 7, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Nielsen, J.; Froehlich, A.; DuBray, M.; Druzgal, T.; Cariello, A.; Cooperrider, J.; Zielinski, B.; Ravichandran, C.; Fletcher, P.; et al. Functional connectivity magnetic resonance imaging classification of autism. Brain 2011, 134, 3742–3754. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, J.; Wu, X. An fMRI feature selection method based on a minimum spanning tree for identifying patients with autism. Symmetry 2020, 12, 1995. [Google Scholar] [CrossRef]
- Rakhimberdina, Z.; Liu, X.; Murata, T. Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. Sensors 2020, 20, 6001. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Li, P.; Peng, Y.; Kang, X.; Jiang, C.; Li, F.; Zhu, X.; Yao, D.; Biswal, B.; et al. Separated channel attention convolutional neural network (sc-cnn-attention) to identify adhd in multi-site rs-fmri dataset. Entropy 2020, 22, 893. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.; Srivastava, G.; Reiss, A.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Ward, B.; Xie, C.; Li, W.; Wu, Z.; Jones, J.; Franczak, M.; Antuono, P.; Li, S. Classification of alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR Imaging. Radiology 2011, 259, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Riddle, K.; Cascio, C.; Woodward, N. Brain structure in autism: A voxel-based morphometry analysis of the autism brain imaging database exchange (ABI DE). Brain Imaging Behav. 2016, 11, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Aylward, E.; Minshew, N.; Field, K.; Sparks, B.; Singh, N. Effects of age on brain volume and head circumference in autism. Neurology 2002, 59, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Palmen, S.; Hulshoff Pol, H.; Kemner, C.; Schnack, H.; Durston, S.; Lahuis, B.; Kahn, R.; Van Engelend, H. Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychol. Med. 2004, 35, 561–570. [Google Scholar] [CrossRef]
- Courchesne, E.; Pierce, K.; Schumann, C.; Redcay, E.; Buckwalter, J.; Kennedy, D.; Morgan, J. Mapping early brain development in autism. Neuron 2007, 56, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Herbert, M.; Ziegler, D.; Deutsch, C.; O’Brien, L.; Lange, N.; Bakardjiev, A.; Hodgson, J.; Adrien, K.; Steele, S.; Makris, N.; et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003, 126, 1182–1192. [Google Scholar] [CrossRef] [Green Version]
- Jou, R.; Mateljevic, N.; Minshew, N.; Keshavan, M.; Hardan, A. Reduced central white matter volume in autism: Implications for long-range connectivity. Psychiatry Clin. Neurosci. 2010, 65, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Rakić, M.; Cabezas, M.; Kushibar, K.; Oliver, A.; Lladó, X. Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage: Clin. 2020, 25, 102181. [Google Scholar] [CrossRef]
- Kong, Y.; Gao, J.; Xu, Y.; Pan, Y.; Wang, J.; Liu, J. Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 2019, 324, 63–68. [Google Scholar] [CrossRef]
- Arbabshirani, M.; Plis, S.; Sui, J.; Calhoun, V. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage 2017, 145, 137–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.; Zielinski, B.; Fletcher, P.; Alexander, A.; Lange, N.; Bigler, E.; Lainhart, J.; Anderson, J. Multisite functional connectivity MRI classification of autism: ABIDE results. Front. Hum. Neurosci. 2013, 7, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makers of MATLAB and Simulink. Available online: https://www.mathworks.com/ (accessed on 26 March 2021).
- Wellcome Centre for Human Neuroimaging. SPM (Statistical Parametric Mapping). Available online: https://www.fil.ion.ucl.ac.uk/spm-statistical-parametric-mapping/ (accessed on 26 March 2021).
- Heinsfeld, A.; Franco, A.; Craddock, R.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 2018, 17, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Eslami, T.; Mirjalili, V.; Fong, A.; Laird, A.; Saeed, F. ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data. Front. Neuroinform. 2019, 13, 70. [Google Scholar] [CrossRef]
- Tang, M.; Kumar, P.; Chen, H.; Shrivastava, A. Deep multimodal learning for the diagnosis of autism spectrum disorder. J. Imaging 2020, 6, 47. [Google Scholar] [CrossRef]
- Biswal, B. Resting state fMRI: A personal history. NeuroImage 2012, 62, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Yan, C.; Li, Q.; Denio, E.; Castellanos, F.; Alaerts, K.; Anderson, J.; Assaf, M.; Bookheimer, S.; Dapretto, M.; et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 2013, 19, 659–667. [Google Scholar] [CrossRef]
- ABIDE. Available online: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html (accessed on 13 February 2021).
- Cameron, C.; Yassine, B.; Carlton, C.; Francois, C.; Alan, E.; András, J.; Budhachandra, K.; John, L.; Qingyang, L.; Michael, M.; et al. The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform. 2013, 7. [Google Scholar] [CrossRef]
- ABIDE Preprocessed. Available online: http://preprocessed-connectomes-project.org/abide/ (accessed on 13 February 2021).
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Bellec, P.; Rosa-Neto, P.; Lyttelton, O.; Benali, H.; Evans, A. Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage 2010, 51, 1126–1139. [Google Scholar] [CrossRef] [PubMed]
- Craddock, R.; James, G.; Holtzheimer, P.; Hu, X.; Mayberg, H. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 2011, 33, 1914–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, J.; Cohen, A.; Nelson, S.; Wig, G.; Barnes, K.; Church, J.; Vogel, A.; Laumann, T.; Miezin, F.; Schlaggar, B.; et al. Functional Network Organization of the Human Brain. Neuron 2011, 72, 665–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilearn. Statistical Analysis for NeuroImaging in Python—Machine Learning for NeuroImaging. Available online: https://nilearn.github.io/index.html (accessed on 13 February 2021).
- Dadi, K.; Rahim, M.; Abraham, A.; Chyzhyk, D.; Milham, M.; Thirion, B.; Varoquaux, G. Benchmarking functional connectome-based predictive models for resting-state fMRI. NeuroImage 2019, 192, 115–134. [Google Scholar] [CrossRef]
- Varoquaux, G.; Baronnet, F.; Kleinschmidt, A.; Fillard, P.; Thirion, B. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Beijing, China, 20–24 September 2010. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Abraham, A.; Milham, M.; Di Martino, A.; Craddock, R.; Samaras, D.; Thirion, B.; Varoquaux, G. Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example. NeuroImage 2017, 147, 736–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, J.; Wu, F.; Hayrat, R.; Liu, J. AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning. J. Neurosci. Methods 2020, 343, 108840. [Google Scholar] [CrossRef]
- Yang, X.; Schrader, P.T.; Zhang, N. A deep neural network study of the abide repository on autism spectrum classification. Int. J. Adv. Comput. Sci. Appl. 2020, 11. [Google Scholar] [CrossRef]
- Mellema, C.; Treacher, A.; Nguyen, K.; Montillo, A. Multiple Deep Learning Architectures Achieve Superior Performance Diagnosing Autism Spectrum Disorder using Features Previously Extracted from Structural and Functional MRI. In Proceedings of the IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar]
- Li, X.; Gu, Y.; Dvornek, N.; Staib, L.H.; Ventola, P.; Duncan, J.S. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med. Image Anal. 2020, 65, 101765. [Google Scholar] [CrossRef]
- Du, C.; Li, J.; Huang, L.; He, H. Brain Encoding and Decoding in fMRI with Bidirectional Deep Generative Models. Engineering 2019, 5, 948–953. [Google Scholar] [CrossRef]
- Yassin, W.; Nakatani, H.; Zhu, Y.; Kojima, M.; Owada, K.; Kuwabara, H.; Gonoi, W.; Aoki, Y.; Takao, H.; Natsubori, T.; et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl. Psychiatry 2020, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, M.; Jaja, J.; Pessoa, L. Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification. NeuroImage 2020, 207, 116398. [Google Scholar] [CrossRef] [PubMed]
- Farahani, F.V.; Karwowski, W.; Lighthall, N.R. Application of graph theory for identifying connectivity patterns in human brain networks: A systematic review. Front. Neurosci. 2019, 13, 585. [Google Scholar] [CrossRef] [PubMed]
Autism Brain Imaging Data Exchange (ABIDE) Dataset | ||||
---|---|---|---|---|
Site | Count | Age Range | ||
ASD | Control | Total | ||
Caltech | 5 | 10 | 15 | 17–56 |
CMU | 6 | 4 | 10 | 19–40 |
KKI | 12 | 20 | 32 | 8–13 |
LEUVEN | 26 | 30 | 56 | 12–32 |
MAX_MUN | 19 | 27 | 46 | 7–58 |
NYU | 74 | 98 | 172 | 6–39 |
OHSU | 12 | 13 | 25 | 8–15 |
OLIN | 14 | 14 | 28 | 10–24 |
PITT | 24 | 26 | 50 | 9–35 |
SBL | 12 | 14 | 26 | 20–64 |
SDSU | 8 | 18 | 26 | 9–17 |
Stanford | 12 | 13 | 25 | 8–13 |
Trinity | 19 | 25 | 44 | 12–26 |
UCLA | 48 | 37 | 85 | 8–18 |
UM | 46 | 73 | 119 | 8–29 |
USM | 43 | 24 | 67 | 9–50 |
YALE | 22 | 18 | 40 | 8–18 |
TOTAL | 402 | 464 | 866 | 6–64 |
Network Configuration | Mean Performance Evaluation using Craddock 200 (CC200) Atlas | |||||||
---|---|---|---|---|---|---|---|---|
Model | Input Layer | Hidden Layer 1 | Hidden Layer 2 | Accuracy | Acc. Std (%) | Sensitivity | F1-Score | AUC Score |
Model-1 | 19900 | 64 | 32 | 0.8473 | 1.57 | 0.9406 | 0.8510 | 0.9515 |
Model-2 | 19900 | 32 | 32 | 0.8668 | 2.38 | 0.8683 | 0.8579 | 0.9571 |
Model-3 | 19900 | 32 | 16 | 0.8530 | 3.02 | 0.7194 | 0.8185 | 0.9569 |
Model-4 | 19900 | 16 | 16 | 0.6843 | 2.74 | 0.9429 | 0.7343 | 0.9595 |
Model-5 | 19900 | 16 | 8 | 0.5947 | 4.23 | 0.9182 | 0.6770 | 0.9592 |
Network Configuration | Mean Performance Evaluation using Power Atlas | |||||||
---|---|---|---|---|---|---|---|---|
Model | Input Layer | Hidden Layer 1 | Hidden Layer 2 | Accuracy | Acc. Std (%) | Sensitivity | F1-Score | AUC Score |
Model-1 | 34716 | 64 | 32 | 0.7898 | 2.12 | 0.9626 | 0.8098 | 0.9513 |
Model-2 | 34716 | 32 | 32 | 0.8533 | 2.38 | 0.8633 | 0.8453 | 0.9531 |
Model-3 | 34716 | 32 | 16 | 0.8245 | 2.31 | 0.9429 | 0.8335 | 0.9505 |
Model-4 | 34716 | 16 | 16 | 0.8638 | 3.22 | 0.7662 | 0.8385 | 0.9565 |
Model-5 | 34716 | 16 | 8 | 0.5993 | 2.16 | 0.9802 | 0.6946 | 0.9509 |
Network Configuration | Mean Performance Evaluation using Bootstrap Analysis of Stable Clusters (BASC) Atlas | |||||||
---|---|---|---|---|---|---|---|---|
Model | Input Layer | Hidden Layer 1 | Hidden Layer 2 | Accuracy | Acc. Std (%) | Sensitivity | F1-Score | AUC Score |
Model-1 | 7381 | 64 | 32 | 0.8557 | 2.76 | 0.8634 | 0.8467 | 0.9570 |
Model-2 | 7381 | 32 | 32 | 0.8787 | 2.33 | 0.9029 | 0.8739 | 0.9587 |
Model-3 | 7381 | 32 | 16 | 0.8672 | 2.49 | 0.8507 | 0.8563 | 0.9439 |
Model-4 | 7381 | 16 | 16 | 0.8545 | 2.51 | 0.8358 | 0.8419 | 0.9471 |
Model-5 | 7381 | 16 | 8 | 0.8579 | 1.90 | 0.8731 | 0.8511 | 0.9418 |
Network Configuration | Mean Performance Evaluation using Automated Anatomical Labeling (AAL) Atlas | |||||||
---|---|---|---|---|---|---|---|---|
Model | Input Layer | Hidden Layer 1 | Hidden Layer 2 | Accuracy | Acc. Std (%) | Sensitivity | F1-Score | AUC Score |
Model-1 | 6670 | 64 | 32 | 0.8611 | 2.59 | 0.8933 | 0.8561 | 0.9523 |
Model-2 | 6670 | 32 | 32 | 0.8737 | 2.49 | 0.8412 | 0.8599 | 0.9512 |
Model-3 | 6670 | 32 | 16 | 0.8679 | 3.77 | 0.7941 | 0.8475 | 0.9500 |
Model-4 | 6670 | 16 | 16 | 0.8702 | 3.95 | 0.9082 | 0.8665 | 0.9522 |
Model-5 | 6670 | 16 | 8 | 0.8312 | 2.73 | 0.9404 | 0.8379 | 0.9509 |
Site ID | No of Subjects | Accuracy | Sensitivity | F1-Score |
---|---|---|---|---|
PITT | 50 | 0.94 | 0.96 | 0.94 |
YALE | 40 | 0.95 | 0.91 | 0.95 |
NYU | 172 | 0.92 | 0.92 | 0.91 |
UM | 119 | 0.93 | 0.92 | 0.92 |
L-SVM | KNN | DT | RF | GNB | Model-2 | |
---|---|---|---|---|---|---|
AAL | 0.6613 | 0.481 | 0.5224 | 0.5637 | 0.6176 | 0.8737 |
BASC | 0.6166 | 0.5473 | 0.5115 | 0.5427 | 0.62 | 0.8787 |
CC200 | 0.6865 | 0.5488 | 0.5166 | 0.574 | 0.6026 | 0.8668 |
POWER | 0.6697 | 0.5265 | 0.5161 | 0.5254 | 0.6062 | 0.8533 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subah, F.Z.; Deb, K.; Dhar, P.K.; Koshiba, T. A Deep Learning Approach to Predict Autism Spectrum Disorder Using Multisite Resting-State fMRI. Appl. Sci. 2021, 11, 3636. https://doi.org/10.3390/app11083636
Subah FZ, Deb K, Dhar PK, Koshiba T. A Deep Learning Approach to Predict Autism Spectrum Disorder Using Multisite Resting-State fMRI. Applied Sciences. 2021; 11(8):3636. https://doi.org/10.3390/app11083636
Chicago/Turabian StyleSubah, Faria Zarin, Kaushik Deb, Pranab Kumar Dhar, and Takeshi Koshiba. 2021. "A Deep Learning Approach to Predict Autism Spectrum Disorder Using Multisite Resting-State fMRI" Applied Sciences 11, no. 8: 3636. https://doi.org/10.3390/app11083636
APA StyleSubah, F. Z., Deb, K., Dhar, P. K., & Koshiba, T. (2021). A Deep Learning Approach to Predict Autism Spectrum Disorder Using Multisite Resting-State fMRI. Applied Sciences, 11(8), 3636. https://doi.org/10.3390/app11083636