Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oak Wood Origin
2.2. White Wine Vinification and Sample Collection
2.3. Oenological Parameters in Wines
2.4. Reagents and Standards
2.5. Liquid-Liquid Extraction of Volatile Compounds
2.6. Determination of Volatile Compounds
2.7. Odor Activity Values (OAVs)
2.8. Statistical Analysis
3. Results
3.1. Basic Oenological Parameters
3.2. Volatile Profile of White Wines Aged with Non-Toasted and Light-Toasted Oak Chips
3.2.1. Alcohols
3.2.2. Esters
3.2.3. Fatty Acids
3.2.4. Lactones
3.2.5. Volatile Phenols
3.3. Odor Active Odorants
3.4. Multivariate Analysis
4. Discussion
4.1. Basic Parameters of Chardonnay Aged Wines
4.2. Volatile Compounds in Chardonnay Aged Wine
4.3. Odor Activity Values
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verdú, A.J.; Lloréns, F.; Fuentes, M. Measuring perceptions of quality in food products: The case of red wine. Food Qual. Pref. 2004, 15, 453–469. [Google Scholar] [CrossRef]
- Charters, S.; Pettigrew, S. The dimensions of wine quality. Food Qual. Pref. 2007, 18, 997–1007. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. Factors influencing the aroma composition of Chardonnay wines. J. Agric. Food Chem. 2014, 62, 6512–6534. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, M.J.; Hermosin-Gutierrez, I.; Perez-Coello, M.S. Accelerated aging against conventional storage: Effects on the volatile composition of Chardonnay white wines. J. Food Sci. 2013, 78, C507–C5013. [Google Scholar] [CrossRef]
- Martínez-Gil, A.; Del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Different woods in cooperage for oenology: A Review. Beverages 2018, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Cadahía, E.; Fernández de Simón, B.; Jalocha, J. Volatile compounds in spanish, french, and american oak woods after natural seasoning and toasting. J. Agric. Food Chem. 2003, 51, 5923–5932. [Google Scholar] [CrossRef] [PubMed]
- Kyraleou, M.; Tzanakouli, E.; Kotseridis, Y.; Chira, K.; Ligas, I.; Kallithraka, S.; Teissedre, P.-L. Addition of wood chips in red wine during and after alcoholic fermentation: Differences in color parameters, phenolic content and volatile composition. OENO One 2016, 50. [Google Scholar] [CrossRef] [Green Version]
- Herjavec, S.; Jeromel, A.; Orlic, S.; Kozina, B. Changes in chemical composition and sensory properties of Vugava wines aged in Croatia oak barrels. J. Cent. Eur. Agric. 2007, 8, 195–204. [Google Scholar]
- Chira, K.; Teissedre, P.-L. Extraction of oak volatiles and ellagitannins compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: Behaviour during storage. Food Chem. 2013, 140, 168–177. [Google Scholar] [CrossRef]
- Gordillo, B.; Cejudo-Bastante, M.J.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J. Application of the differential colorimetry and polyphenolic profile to the evaluation of the chromatic quality of Tempranillo red wines elaborated in warm climate. Influence of the presence of oak wood chips during fermentation. Food Chem. 2013, 141, 2184–2190. [Google Scholar] [CrossRef]
- Tao, Y.; García Martín, J.F.; Sun, D.-W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef]
- Cortiella, M.; Ubeda, C.; Covarrubias, J.I.; Laurie, V.P.; Peña-Neira, Á. Chemical and physical implications of the use of alternative vessels to oak barrels during the production of white wines. Molecules 2021, 26, 554. [Google Scholar] [CrossRef] [PubMed]
- Călugăr, A.; Coldea, T.E.; Pop, C.R.; Pop, T.I.; Babeș, A.C.; Bunea, C.I.; Manolache, M.; Gal, E. Evaluation of volatile compounds during ageing with oak chips and oak barrel of muscat ottonel wine. Processes 2020, 8, 1000. [Google Scholar] [CrossRef]
- Manolache, M.; Pop, T.I.; Babes, A.C.; Farcas, I.-A.; Muncaciu, M.L.; Călugăr, A.; Gal, E. Volatile composition of some red wines from romania assessed by GC-MS. Stud. UBB Chem. 2018, 63, 125–142. [Google Scholar] [CrossRef]
- Chira, K.; Teissedre, P.-L. Relation between volatile composition, ellagitannin content and sensory perception of oak wood chips representing different toasting processes. Eur. Food Res. Technol. 2013, 236, 735–746. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) 2019/934 of 12 March 2019 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards wine-growing areas where the alcoholic strength may be increased, authorised oenological practices and restrictions applicable to the production and conservation of grapevine products, the minimum percentage of alcohol for by-products and their disposal, and publication of OIV files. Off. J. Eur. Union 2019, 62, 1–53.
- Herrero, P.; Sáenz-Navajas, M.P.; Avizcuri, J.M.; Culleré, L.; Balda, P.; Antón, E.C.; Ferreira, V.; Escudero, A. Study of Chardonnay and Sauvignon blanc wines from D.O.Ca Rioja (Spain) aged in different French oak wood barrels: Chemical and aroma quality aspects. Food Res. Int. 2016, 89, 227–236. [Google Scholar] [CrossRef]
- Guchu, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; González-Viñas, M.A.; Ibáñez, M.D.C. Volatile composition and sensory characteristics of Chardonnay wines treated with American and Hungarian oak chips. Food Chem. 2006, 99, 350–359. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Chira, K.; Teissedre, P.L. Use of oak wood during malolactic fermentation and ageing: Impact on Chardonnay wine character. Food Chem. 2018, 278, 460–468. [Google Scholar] [CrossRef]
- Liberatore, M.T.; Pati, S.; Del Nobile, M.A.; La Notte, E. Aroma quality improvement of Chardonnay white wine by fermentation and ageing in barrique on lees. Food Res. Int. 2010, 43, 996–1002. [Google Scholar] [CrossRef]
- Spillman, P.J.; Sefton, M.A.; Gawel, R. The contribution of volatile compounds derived during oak barrel maturation to the aroma of a Chardonnay and Cabernet Sauvignon wine. Austr. J. Grape Wine Res. 2004, 10, 227–235. [Google Scholar] [CrossRef]
- Antoce, A.O.; Călugăru, L.L. Evolution of grapevine surfaces in Romania after accession to European Union—period 2007–2016. In Proceedings of the 40th World Congress of Vine and Wine, BIO Web of Conferences, Sofia, Bulgaria, 29 May—2 June 2017; Volume 9, pp. 03018. [Google Scholar]
- Irimia, L.M.; Patriche, C.V.; Rosca, B.; Cotea, V.V. Modifications in climate suitability for wine production of Romanian wine regions as a result of climate change. In Proceedings of the 40th World Congress of Vine and Wine, BIO Web of Conferences, Sofia, Bulgaria, 29 May–2 June 2017; Volume 9, pp. 01026. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis Paris, France, 2020. Available online: http://www.oiv.int/public/medias/7372/oiv-compendium-volume-1-2020.pdf (accessed on 18 September 2020).
- Bora, F.D.; Donici, A.; Oşlobanu, A.; Fițiu, A.; Babeș, A.C.; Bunea, C.I. Qualitative assessment of the white wine varieties grown in Dealu Bujorului vineyard, Romania. Not. Bot. Horti Agrobot. 2016, 44, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Andujar-Ortiz, I.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Pozo-Bayón, M.A. Analytical performance of three commonly used extraction methods for the gas chromatography–mass spectrometry analysis of wine volatile compounds. Adv. Sep. Methods Food Anal. 2009, 1216, 7351–7357. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.; Stefova, M.; Vojnoski, B.; Stafilov, T.; Bíró, I.; Bufa, A.; Felinger, A.; Kilár, F. Volatile composition of macedonian and hungarian wines assessed by GC/MS. Food Bioprocess Technol. 2013, 6, 1609–1617. [Google Scholar] [CrossRef]
- Etiévant, X.P. Wine. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 583–546. [Google Scholar]
- Pomar, M.; Gonzalez-Mendoza, L.A. Changes in composition and sensory quality of red wine aged in American and French oak barrels. J. Int. Sci. Vigne Vin. 2001, 35, 41–48. [Google Scholar] [CrossRef]
- Dumitriu, G.-D.; Teodosiu, C.; Gabur, I.; Cotea, V.V.; Peinado, R.A.; López de Lerma, N. Evaluation of aroma compounds in the process of wine ageing with oak chips. Foods 2019, 8, 662. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Liu, Y.; Yue, T.-X.; Zhang, Z.-W. Comparison between aroma compounds in wines from four Vitis vinifera grape varieties grown in different shoot positions. Food Sci. Technol. Campinas 2015, 35, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Baron, M.; Prusova, B.; Tomaskova, L.; Kumsta, M.; Sochor, J. Terpene content of wine from the aromatic grape variety ‘Irsai Oliver’ (Vitis vinifera L.) depends on maceration time. Open Life Sci. 2017, 12, 42–50. [Google Scholar] [CrossRef]
- Guth, H. Quantification and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Du, X.F.; Finn, C.E.; Qian, M.C. Volatile composition and odour-activity value of thornless ‘Black Diamond’ and ‘Marion’ blackberries. Food Chem. 2010, 119, 1127–1134. [Google Scholar] [CrossRef]
- Furtuna, N. Harnessing the Aroma Potential of Grape Varieties Startovyi, Viorica and Muscat of Ialoveni. Ph.D. Thesis, Tehnic University of Moldova, Chișinau, Moldova, 2015; 169p. [Google Scholar]
- Návojská, J.; Brandes, W.; Nauer, S.; Eder, R.; Frančáková, H. Influence of different oak chips on aroma compounds in wine. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 957–971. [Google Scholar]
- Farrell, R.R.; Wellinger, M.; Gloess, A.N.; Nichols, D.S.; Breadmore, M.C.; Shellie, R.A.; Yeretzian, C. Real-time mass spectrometry monitoring of oak wood toasting: Elucidating aroma development relevant to oak-aged wine quality. Sci. Rep. 2015, 5, 17334. [Google Scholar] [CrossRef] [Green Version]
- Aiken, J.W.; Noble, A.C. Composition and sensory properties of Cabernet Sauvignon wine aged in French versus American oak barrels. Vitis 1984, 23, 27–36. [Google Scholar]
- Towey, J.P.; Waterhouse, A.L. The extraction of volatile compounds from French and American oak barrels in Chardonnay during three successive vintages. Am. J. Enol. Vitic. 1996, 47, 163–172. [Google Scholar]
- Garde-Cerdán, T.; Torrea-Goñi, D.; Ancín-Azpilicueta, C. Accumulation of volatile compounds during ageing of two red wines with different composition. J. Food Eng. 2004, 65, 349–356. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Lorenzo, C.; Carot, J.M.; Jabaloyes, J.M.; Esteve, M.D.; Salinas, M.R. Statistical differentiation of wines of different geographic origin and aged in barrel according to some volatile components and ethylphenols. Food Chem. 2008, 111, 1025–1031. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; González-Sanjosé, M.L.; González-Huerta, C. Consideration of the influence of aging process, type of wine and oenological classic parameters on the levels of wood volatile compounds present in red wines. Food Chem. 2007, 103, 1434–1448. [Google Scholar] [CrossRef]
- Louw, L.; Tredoux, A.G.J.; Van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-derived aroma compounds in varietal young wines from South Africa. S. Afr. J. Enol. Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.-C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- Lasik-Kurdys, M.; Majcher, M.; Nowak, J. Effects of different techniques of malolactic, fermentation induction on diacetyl metabolism and biosynthesis of selected aromatic esters in cool-climate grape wines. Molecules 2018, 23, 2549. [Google Scholar] [CrossRef] [Green Version]
- Martineau, B.; Henick-Kling, T. Performance and diacetyl production of commercial strains of malolactic bacteria in wine. J. Appl. Bacteriol. 1995, 78, 526–536. [Google Scholar] [CrossRef]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Alcaraz, Z.C. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Ugliano, M.; Moio, L. Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus Oeni. J. Agric. Food Chem. 2005, 53, 10134–10139. [Google Scholar] [CrossRef] [PubMed]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavour. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar]
- Shinohara, T. Gas chromatographic analysis of volatile fatty acids in wines. Agr. Biol. Chem. Tokio 1985, 49, 2211–2212. [Google Scholar]
- Xu, M.L.; Yu, Y.; Ramaswamy, H.S.; Zhu, S.M. Characterization of chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics. Sci. Rep. 2017, 7, 39671–39671. [Google Scholar] [CrossRef] [PubMed]
- Vivas, N.; Lonvaud Funel, A.; Glories, Y. Observations concerning the increase of volatile acidity in red wines whilst ageing in barrels. J. Sci. Tech. Tonnelerie Fr. 1995, 1, 81–122. [Google Scholar]
- Bloem, A.; Lonvaud-Funel, A.; de Revel, G. Hydrolysis of glycosidically bound flavour compounds from oak wood by Oenococcus oeni. Food Microbiol. 2008, 25, 99–104. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Garde-Cerdán, T.; Martínez, L.; Alonso, G.L.; Salinas, M.R. Effect of oak extract, application to Verdejo grapevines on grape and wine aroma. J. Agric. Food Chem. 2011, 59, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Antonopoulos, A.; Stefanou, E.; Dourtoglou, V.G. Artificial aging of wines using oak chips. Food Chem. 2003, 86, 563–570. [Google Scholar] [CrossRef]
- Petrozziello, M.; Nardi, T.; Asproudi, A.; Cravero, M.C.; Bonello, F. Chemistry and technology of wine aging with oak chips chemistry and biochemistry of winemaking. Cosme, F., Nunes, F.M., Filipe-Ribeiro, L., Eds.; Intech Open: London, UK, 2020. [Google Scholar] [CrossRef]
Time of Maturation (Months) | Type of Vessel Maturation | Oak Chips (4 g/L) | Abbreviations |
---|---|---|---|
1 | Demijohns/Glass | Non-toasted | N1M |
Light-toasted | L1M | ||
Barrel | Non-toasted | BAR1M | |
2 | Demijohns/Glass | Non-toasted | N2M |
light-toasted | L2M | ||
Barrel | Non-toasted | BAR2M | |
3 | Demijohns/Glass | Non-toasted | N3M |
Light-toasted | L3M | ||
Barrel | Non-toasted | BAR3M | |
Control Wine—unaged wine | CW |
Variants/Oenologic Parameters | CW | N1M | N2M | N3M | L1M | L2M | L3M | BAR1M | BAR2M | BAR3M | Time | Ageing Method |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ethanol (%v/v) | 12.77 ± 0.03a | 12.75 ± 0.04a | 12.69 ± 0.08ab | 12.66 ± 0.06bc | 12.75 ± 0.04a | 12.69 ± 0.08ab | 12.66 ± 0.06bc | 12.62 ± 0.02bc | 12.54 ± 0.04c | 12.55 ± 0.02c | ** | *** |
Volatile acidity (g/L acetic acid) | 0.22 ± 0.02c | 0.24 ± 0.03c | 0.28 ± 0.02bc | 0.31 ± 0.01b | 0.24 ± 0.03c | 0.28 ± 0.02bc | 0.31 ± 0.01b | 0.32 ± 0.02b | 0.41 ± 0.04a | 0.46 ± 0.02a | *** | *** |
Total acidity (g/L tartaric acid) | 7.96 ± 0.07a | 7.86 ± 0.04ab | 7.74 ± 0.04bc | 7.58 ± 0.08c | 7.84 ± 0.03ab | 7.73 ± 0.04bc | 7.58 ± 0.08c | 7.91 ± 0.04a | 7.87 ± 0.04ab | 7.76 ± 0.07bc | *** | ** |
Dry extract (g/L) | 23.60 ± 0.23a | 23.52 ± 0.35a | 23.41 ± 0.39a | 23.37 ± 0.25a | 23.52 ± 0.35a | 23.41 ± 0.42a | 23.36 ± 0.33a | 23.52 ± 0.31a | 23.41 ± 0.40a | 23.37 ± 0.35a | ns | ns |
Non-reducing dry extract (g/L) | 22.03 ± 0.03a | 22.01 ± 0.04a | 22.05 ± 0.04a | 21.99 ± 0.04a | 22.06 ± 0.05a | 20.00 ± 0.03a | 21.92 ± 0.04a | 22.04 ± 0.09a | 22.07 ± 0.12a | 20.05 ± 0.06a | ns | ns |
Free SO2 (mg/L) | 36 ± 1.00a | 33 ± 0.58ab | 32 ± 0.58bc | 31 ± 1.00c | 34 ± 0.81ab | 33 ± 0.72bc | 30 ± 0.50c | 32 ± 1.42bc | 30 ± 1.15c | 27 ± 1.05d | ** | *** |
Total SO2 (mg/L) | 120 ± 0.76bc | 123 ± 2.00ab | 124 ± 1.53a | 126 ± 1.85a | 123 ± 1.44ab | 124 ± 2.08a | 126 ± 1.76a | 118 ± 0.76cd | 116 ± 0.85cd | 115 ± 0.83d | * | *** |
pH | 3.22 ± 0.02b | 3.23 ± 0.02ab | 3.23 ± 0.01ab | 3.24 ± 0.01a | 3.22 ± 0.02b | 3.23 ± 0.01ab | 3.24 ± 0.02a | 3.23 ± 0.02ab | 3.25 ± 0.03a | 3.24 ± 0.01a | * | ns |
Variant/Volatile Compounds | CW | N1M | N2M | N3M | L1M | L2M | L3M | BAR1M | BAR2M | BAR3M | Time | Ageing Method |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Isobutanol | 47 ± 0.03a | 39 ± 2.7d | 40 ± 3.8 c | 42 ± 3.5 b | 39 ± 1.7 d | 41 ± 2.3 bc | 41 ± 1.9 bc | 38 ± 2.8 e | 38 ± 2.6 e | 41 ± 2.4 bc | ** | *** |
Isopentyl alcohol | 76 ± 2.1e | 83 ± 4.5c | 84 ± 5.2 bc | 83 ± 5.7 c | 85 ± 4.2 ab | 84 ± 3.2 bc | 86 ± 5.8 a | 82 ± 2.1 d | 83± 3.0 c | 84 ± 2.7 bc | * | *** |
2-phenylethanol | 15 ± 0.3e | 16 ± 2.4 d | 17 ± 2.0 c | 17 ± 2.8c | 16 ± 1.9d | 18 ± 2.5b | 17 ± 2.9c | 19 ± 2.6a | 17 ± 2.1c | 18 ± 2.8 b | * | *** |
Total major alcohols (mg/L) | 138 | 138 | 141 | 142 | 140 | 145 | 144 | 139 | 138 | 143 | ||
Hexanol | 564 ± 5.7de | 438 ± 3.2e | 398 ± 7.8f | 865 ± 6.5b | 375 ± 2 4f | 342 ± 7.8f | 1057 ± 50a | 760 ± 42bc | 627 ± 8.7c | 1145 ± 12.1a | * | *** |
4-methyl-1-pentanol | 22 ± 0.6b | 25 ± 2.6ab | 11 ± 3cd | 12 ± 0.9cd | 31 ± 1.5a | 10 ± 1.8d | 9.7 ± 0.5d | 33 ± 5.7a | 22 ± 7.8bc | 18 ± 2.8bc | ** | ** |
E-3-hexenol | 30 ± 1.2b | 30 ± 3.5b | 16 ± 3.1c | 17 ± 1.5c | 40 ± 6.6a | 41 ± 3.5a | 41 ± 3.3a | 27 ± 1.2b | 24 ± 3.5 bc | 45 ± 3.4a | * | ** |
Z-3-hexenol | 112 ± 0.3de | 119 ± 0.4bc | 117 ± 3.7 c | 121 ± 0.2b | 111 ± 2.6e | 114 ± 4.5bc | 113 ± 0.3d | 122 ± 1.3b | 124 ± 2.8a | 123 ± 1.1b | * | * |
2-nonanol | 173 ± 9.6a | 100 ± 11b | 47 ± 4.5de | 58 ± 6.8de | 115 ± 3.5b | 37 ± 5.2e | 59 ± 6.8de | 98 ± 2.1c | 78 ± 7.8cd | 13 ± 0.6f | ** | *** |
1-heptanol | 124 ± 1.2e | 230 ± 9.4a | 201 ± 4.9bc | 174 ± 3.1d | 240 ± 35a | 150 ± 22d | 136 ± 6.0c | 230 ± 5.0a | 211 ± 2.6b | 182 ± 3.7c | *** | *** |
2,3-butanediol | 301 ± 35e | 507 ± 24de | 1137 ± 12.9cd | 1417 ± 21c | 330 ± 27e | 605 ± 9.8de | 769 ± 45de | 1686 ± 14.7c | 2797 ± 35.2b | 4973 ± 52a | *** | *** |
3-methylthio-1-propanol | 278 ± 15bc | 248 ± 15bc | 250 ± 25bc | 206 ± 19d | 176 ± 15d | 166 ± 31d | 222 ± 17bc | 553 ± 49a | 290 ± 17b | 244 ± 75bc | *** | *** |
Benzylalcohol | 58 ± 3.5a | 44 ± 2.4c | 45 ± 1.90c | 47 ± 2.2bc | 42 ± 2.6d | 49 ± 2.4b | 48 ± 3.1b | 32 ± 2.4f | 34 ± 2.1e | 39 ± 3.5de | *** | *** |
Total minor alcohols (µg/L) | 1662 | 1741 | 2222 | 2917 | 1460 | 1514 | 2454 | 3541 | 4207 | 6782 | ||
Linalool | 323 ± 7.8a | 59 ± 4.9c | 49 ± 4.6cd | 33 ± 2.8e | Trace | trace | Trace | 83 ± 7.3b | 45 ± 2.3de | 36 ± 2.3e | *** | *** |
Terpineol | 127 ± 8.7a | 11 ± 2.6c | trace | ND | Trace | trace | Trace | 23 ± 3.6b | 10 ± 0.3c | 11 ± 1.2c | *** | **** |
Trans-geraniol | 52 ± 2.4a | 11 ± 0.5b | ND | ND | ND | ND | ND | 14 ± 2.5b | ND | ND | *** | *** |
Total terpenes (µg/L) | 502 | 81 | 49 | 33 | trace | trace | Trace | 120 | 55 | 47 | ||
Isobutyric acid | 83 ± 3.7b | 81 ± 2.5bc | 51 ± 4.6de | 21 ± 2.1f | 108 ± 10a | 83 ± 3.1b | 39 ± 4.0e | 75 ± 3.3bc | 64 ± 5.6cd | 24 ± 2.8f | *** | *** |
Hexanoic acid | 945 ± 17e | 1267 ± 21d | 1643 ± 68a | 1395 ± 45c | 1640 ± 96a | 1227 ± 21e | 1355 ± 40c | 1574 ± 96b | 1501 ± 65bc | 1016 ± 10d | *** | *** |
Isovaleric acid | 132 ± 2.1e | 156 ± 9.6d | 219 ± 82bc | ND | 163 ± 9.5d | 189 ± 15bc | 190 ± 15bc | 229 ± 7.4bc | 296 ± 19b | 538 ± 4.4a | ** | *** |
Lactic acid | 54 ± 4.7e | 132 ± 21d | 228 ± 19e | 417 ± 67c | 141 ± 5.8d | 192 ± 32d | 108 ± 10e | 431 ± 17c | 808 ± 75b | 1317 ± 145a | *** | *** |
Octanoic acid | 2459 ± 58c | 2377 ± 165bc | 2448 ± 39c | 2653 ± 72b | 2054 ± 89d | 2409 ± 39c | 2442 ± 54c | 2069 ± 153d | 2447 ± 154c | 2866 ± 75a | ** | *** |
Decanoic acid | 957 ± 26a | 449 ± 56b | 227 ± 25d | 125 ± 9.8e | 306 ± 19cd | 117 ± 10e | 124 ± 13e | 441 ± 41b | 274 ± 30cd | 324 ± 21c | *** | *** |
Malic acid | 571 ± 62a | 193 ± 68c | 176 ± 2.5e | 155 ± 12d | 576 ± 42a | 208 ± 51c | 184 ± 7.2e | 372 ± 356b | 205 ± 24c | 165 ± 59d | ** | *** |
5-oxotetrahydrofuran2-carboxilic acid | 71 ± 1.9 de | 61 ± 6.3e | 83 ± 3.6 d | 91 ± 6.8cd | 103 ± 14bc | 116 ± 9.8b | 126 ± 32a | 36 ± 4.0f | 28 ± 0.9f | 71 ± 5.2de | ** | *** |
2-oxoapidic | 8 ± 0.7f | 12 ± 1.5de | 17 ± 1.9e | 14 ± 1.7cd | 22 ± 1.6a | 19 ± 1.4ab | 17 ± 1.2b | 15 ± 1.5c | 11 ± 1.8e | 12 ± 1.6de | ** | ** |
Total fatty acids (µg/L) | 5280 | 4728 | 5071 | 4792 | 4645 | 4336 | 4977 | 5035 | 5634 | 6540 | ||
N-amyl acetate | 2483 ± 12cd | 2433 ± 12d | 2487 ± 40cd | 2471 ± 8 cd | 2581 ± 42bc | 2514 ± 11bc | 2603 ± 31a | 2462 ± 41cd | 2508 ± 36bc | 2548 ± 52bc | ** | *** |
Hexylacetate | 536 ± 13a | 474 ± 31bc | 463 ± 35c | 423 ± 21e | 486 ± 23b | 479 ± 13bc | 465 ± 28c | 452 ± 19cd | 416 ± 13e | 421 ± 22de | * | * |
Ethyl hexanoate | 3151 ± 76c | 3165 ± 96b | 3213 ± 43d | 3120 ± 27bc | 3193 ± 36b | 3160 ± 62b | 3141 ± 58c | 3240 ± 22a | 3103 ± 93d | 3128 ± 71bc | *** | *** |
Ethyl lactate | 395 ± 15f | 1031 ± 59bc | 766 ± 38cd | 849 ± 75 cd | 1179 ± 54b | 616 ±58e | 659 ±78e | 1010 ± 64bc | 954 ± 87bc | 2122 ± 72a | *** | *** |
Ethyl octanoate | 2271 ± 12b | 2148 ± 34bc | 2322 ± 32a | 2297 ± 46b | 2177 ± 54bc | 2362 ± 59a | 2214 ± 26c | 2122 ± 27bc | 2131 ± 12c | 2184 ± 68b | *** | ns |
Phenethyl acetate | 334 ± 15d | 487 ± 15bc | 530 ± 30b | 586 ± 21a | 476 ± 19bc | 490 ± 23bc | 517 ± 45b | 374 ± 38c | 357 ± 41cd | 506 ± 11bc | ns | *** |
Diethyl malate | 142 ± 23g | 222 ± 29c | 286 ± 29a | 219 ± 20c | 169 ± 32f | 162 ± 9.8f | 202 ± 18e | 256 ± 54b | 299 ± 32a | 282 ± 49a | ** | *** |
Diethyl succinate | 115 ± 21d | 283 ± 32ab | 270 ± 38b | 244 ± 25c | 285 ± 41ab | 265 ± 21b | 240 ± 28c | 269 ± 29b | 286 ± 21ab | 294 ± 72a | ** | *** |
Trimethylene acetate | 431 ± 25a | 363 ± 12e | 341 ± 50f | 358 ± 6.2e | 276 ± 36c | 287 ± 24cd | 273 ± 5de | 369 ± 35e | 360 ± 42e | 399 ± 28b | *** | *** |
Ethyl-4-hydroxybutanoate | 275 ± 14b | 296 ± 25a | 149 ± 13d | 171 ± 14c | 281 ± 26ab | 117 ± 12e | 150 ± 14d | 285 ± 46a | 224 ± 20cd | 154 ± 32d | ** | *** |
Total esters (µg/L) | 10133 | 10902 | 10827 | 10738 | 11103 | 10452 | 10464 | 10839 | 10638 | 12038 | ||
Butyrolactone | 344 ± 41b | 443 ± 37ab | 369 ± 27ab | 342 ± 29ab | 228 ± 21c | 260 ± 14.5bc | 208 ± 14c | 532 ± 18a | 466 ± 12ab | 461 ± 10ab | ** | * |
Pantolactone | 12 ± 0.3b | trace | trace | trace | 11 ± 3.2b | trace | Trace | trace | trace | 44 ± 3.6a | * | * |
3,4-dimethyl-2(5)-furanone | 122 ± 12a | 65 ± 6.7bc | 43 ± 3.5cd | 52 ± 4.2cd | 84 ± 9.6b | 33 ± 3.2de | 42 ± 9.2cd | 71 ± 2.1bc | 69 ± 7.0bc | 51 ±5.7cd | *** | *** |
Total lactones (µg/L) | 478 | 508 | 412 | 394 | 323 | 293 | 250 | 603 | 535 | 556 | ||
p-vinyl guiacol | 18 ± 2c | 26 ± 3.6b | 28 ± 3.2b | 31 ± 2.4b | 58 ± 12a | 61 ± 12a | 65 ± 13a | 26 ± 6.4b | 29 ± 3.1b | 33 ± 4.2b | * | *** |
Methyl-hydroxycinamate | 77 ± 6.3a | 32 ± 4.5b | 16 ± 1.2d | 12 ± 1.3e | 21 ± 4.7c | 14 ± 1.1de | 11 ± 0.9e | 26 ± 2.4bc | 13 ± 1.4e | 12 ± 1.2e | *** | *** |
Acetovanillone | 61 ± 0.8e | 157 ± 21b | 122 ± 24d | 119 ± 12d | 171 ± 35a | 167 ± 19a | 143 ± 15c | 162 ± 32ab | 139 ± 21cd | 121 ± 11d | *** | ** |
2,3-hydroxybenzofurane | 156 ± 5.4a | 114 ± 1.6c | 63 ± 5.9e | 79 ± 1.8de | 116 ± 3.1c | 44 ± 1.2f | 33 ± 1.4f | 127 ± 6.3b | 99 ± 8.5d | 56 ± 2.1ef | *** | * |
Vanillin | 39 ± 3.5e | 134 ± 2.1c | 136 ± 1.9bc | 133 ± 1.7c | 139 ± 2.1ab | 138 ± 1.8b | 141 ± 2.3a | 127 ± 1.4d | 126 ± 1.1d | 128 ± 1.9d | * | ** |
Total volatile phenols (µg/L) | 351 | 463 | 365 | 374 | 505 | 424 | 393 | 468 | 406 | 350 |
Volatile Compounds | Odor Descriptor | ODT (mL or µL) | References | CW | N1M | N2M | N3M | L1M | L2M | L3M | BAR1M | BAR2M | BAR3M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Iso-butanol (mg/L) | Bitter, fusel, alcohol | 40 | [27] | 1.17 | 0.97 | 1.00 | 1.05 | 0.97 | 1.02 | 1.02 | 0.95 | 0.95 | 1.02 |
Iso-pentyl alcohol (mg/L) | Fusel | 30 | [32] | 2.53 | 2.76 | 2.80 | 2.76 | 2.83 | 2.80 | 2.86 | 2.73 | 2.76 | 2.80 |
2-phenylethanol (mg/L) | Roses | 14 | [33] | 1.07 | 1.14 | 1.21 | 1.21 | 1.14 | 1.28 | 1.21 | 1.35 | 1.21 | 1.28 |
2-nonanol (µg/L) | green creamy, citrus, cheese, fruity | 58 | [34] | 2.98 | 1.72 | 0.81 | 1.00 | 1.98 | 0.63 | 1.01 | 1.68 | 1.34 | 0.22 |
3-methylthio-1-propanol (µg/L) | Boiled potato, rubber | 500 | [32] | 0.55 | 0.49 | 0.50 | 0.41 | 0.35 | 0.33 | 0.44 | 1.10 | 0.58 | 0.48 |
Linalool (µg/L) | Floral, citrus | 25 | [33] | 12.92 | 2.36 | 1.96 | 1.32 | Trace | trace | trace | 3.32 | 1.80 | 1.44 |
Iso-butyric acid (µg/L) | Fatty, butter, cheese | 50 | [32] | 1.66 | 1.62 | 1.02 | 0.42 | 2.16 | 1.66 | 0.78 | 1.5 | 1.28 | 0.48 |
Isovaleric acid (µg/L) | Fatty, rancid, sweaty | 33.4 | [33] | 3.95 | 4.67 | 6.55 | - | 4.88 | 5.65 | 5.68 | 6.85 | 8.86 | 16.10 |
Octanoic acid (µg/L) | Rancid, cheese, harsh | 500 | [33] | 4.91 | 4.75 | 4.89 | 5.30 | 4.10 | 4.81 | 4.88 | 4.13 | 4.89 | 5.73 |
N-amyl acetate (µg/L) | Banana | 30 | [32] | 82.76 | 81.10 | 82.9 | 82.36 | 86.03 | 83.80 | 86.76 | 82.06 | 83.60 | 84.93 |
Ethyl hexanoate (µg/L) | Apple, anise, strawberry | 5 | [32] | 630.2 | 633.0 | 642.6 | 624.0 | 638.6 | 632.0 | 628.2 | 648.0 | 620.6 | 625.6 |
Ethyl octanoate (µg/L) | Pineapple, pear | 2 | [32] | 1135 | 1074 | 1161 | 1148 | 1088 | 1181 | 1107 | 1061 | 1065 | 1092 |
Phenethyl acetate (µg/L) | Floral | 250 | [27] | 1.33 | 1.94 | 2.12 | 2.34 | 1.90 | 1.96 | 2.07 | 1.49 | 1.43 | 2.02 |
Butyrolactone (µg/L) | Caramel, Sweet | 35 | [32] | 9.82 | 12.66 | 10.54 | 9.77 | 6.51 | 7.43 | 5.94 | 15.20 | 13.31 | 13.17 |
3,4-dimethyl-2(5)-furanone (µg/L) | Caramel | 19 | [35] | 6.42 | 3.42 | 2.26 | 2.73 | 4.42 | 1.74 | 2.21 | 3.74 | 3.63 | 2.68 |
p-vinyl guiacol (µg/L) | Clove, smoke, spice | 40 | [27] | 0.45 | 0.65 | 0.70 | 0.77 | 1.45 | 1.53 | 1.63 | 0.65 | 0.73 | 0.83 |
Vanillin (µg/L) | Vanilla, sweet | 60 | [35] | 0.65 | 2.23 | 2.27 | 2.22 | 2.37 | 2.30 | 2.35 | 2.12 | 2.10 | 2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegăruș, D.I.; Călugăr, A.; Tanase, C.; Muscă, A.; Botoran, O.R.; Manolache, M.; Babeș, A.C.; Bunea, C.; Gál, E.; Bunea, A.; et al. Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania. Appl. Sci. 2021, 11, 3691. https://doi.org/10.3390/app11083691
Stegăruș DI, Călugăr A, Tanase C, Muscă A, Botoran OR, Manolache M, Babeș AC, Bunea C, Gál E, Bunea A, et al. Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania. Applied Sciences. 2021; 11(8):3691. https://doi.org/10.3390/app11083691
Chicago/Turabian StyleStegăruș, Diana Ionela, Anamaria Călugăr, Corneliu Tanase, Adriana Muscă, Oana Romina Botoran, Mihail Manolache, Anca Cristina Babeș, Claudiu Bunea, Emese Gál, Andrea Bunea, and et al. 2021. "Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania" Applied Sciences 11, no. 8: 3691. https://doi.org/10.3390/app11083691
APA StyleStegăruș, D. I., Călugăr, A., Tanase, C., Muscă, A., Botoran, O. R., Manolache, M., Babeș, A. C., Bunea, C., Gál, E., Bunea, A., & Coldea, T. E. (2021). Influence of Oak Chips and Oak Barrel Ageing on Volatile Profile in Chardonnay Wine of Romania. Applied Sciences, 11(8), 3691. https://doi.org/10.3390/app11083691