Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Chemicals
2.3. Enzyme Formulations
2.4. Extraction of Antioxidant Compounds
2.4.1. Solid-Liquid Conventional Extraction (CEM)
2.4.2. Microwave-Assisted Extraction (MAE)
2.4.3. Enzyme-Assisted Extraction (EAE)
2.4.4. Enzyme Pretreatment
2.5. Determination of the Antioxidant Activity
2.6. Total Phenolic Content
2.7. Extraction Kinetics
3. Results and Discussion
3.1. Conventional Extraction Method (CEM) and Microwave-Assisted Extraction (MAE)
3.2. Enzyme-Assisted Extraction (EAE)
3.3. EAE as a Pretreatment Method of CEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lešnik, S.; Furlan, V.; Bren, U. Rosemary (Rosmarinus officinalis L.): Extraction techniques, analytical methods and health-promoting biological effects. Phytochem. Rev. 2021. [Google Scholar] [CrossRef]
- Himed-Idir, H.; Mouhoubi, K.; Siar, E.H.; Boudries, H.; Mansouri, H.; Adjeroud, N.; Madani, K.; Boulekbache-Makhlouf, L. Effect of rosemary (Rosmarinus officinalis L.) supplementation on fresh cheese: Physicochemical properties, antioxidant potential, and sensory attributes. J. Food Process. Preserv. 2021, 45, e15057. [Google Scholar] [CrossRef]
- Teixeira, J.S.; Repková, L.; Gänzle, M.G.; McMullen, L.M. Effect of pressure, reconstituted RTE meat microbiota, and antimicrobials on survival and post-pressure growth of Listeria monocytogenes on ham. Front. Microbiol. 2018, 9, 1979. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Hillebrand, G.G.; Nunez, G. Rosmarinus officinalis L. (rosemary) extracts containing carnosic acid and carnosolare potent quorum sensing inhibitors of Staphylococcus Aureus virulence. Antibiotics 2020, 9, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Agulló-Chazarra, L.; Herranz-López, M.; Valdés, A.; Cifuentes, A.; Micol, V. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci. Rep. 2019, 9, 1–11. [Google Scholar]
- Shen, Y.; Han, J.; Zheng, X.; Ai, B.; Yang, Y.; Xiao, D.; Zheng, L.; Sheng, Z. Rosemary leaf extract inhibits glycation, breast cancer proliferation, and diabetes risks. Appl. Sci. 2020, 10, 2249. [Google Scholar] [CrossRef] [Green Version]
- Makaremi, S.; Ganji, A.; Ghazavi, A.; Mosayebi, G. Inhibition of tumor growth in CT-26 colorectal cancer-bearing mice with alcoholic extracts of Curcuma longa and Rosmarinus officinalis. Gene Rep. 2021, 22, 101006. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, J.; Li, X.; Yuan, Y.; Zhang, L.; Hu, W.; Luo, H.; Yu, H.; Zhang, R. Antidepressant effects of rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Front. Pharmacol. 2018, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- Rahbardar, M.G.; Amin, B.; Mehri, S.; Mirnajafi-Zadeh, S.J.; Hosseinzadeh, H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed. Pharmacother. 2017, 86, 441–449. [Google Scholar] [CrossRef]
- Munekata, P.E.; Alcántara, C.; Žugčić, T.; Abdelkebir, R.; Collado, M.C.; García-Pérez, J.V.; Jambrak, A.R.; Gavahian, M.; Barba, F.J.; Lorenzo, J.M. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res. Int. 2020, 134, 109242. [Google Scholar] [CrossRef]
- Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and nonconventional extraction techniques for optimal extraction processes of rosmarinic acid from six Lamiaceae plants as determined by HPLC-DAD measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. [Google Scholar] [CrossRef]
- Rodríguez-Rojo, S.; Visentin, A.; Maestri, D.; Cocero, M.J. Assisted extraction of rosemary antioxidants with green solvents. J. Food Eng. 2012, 109, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction Kinetics of Phenolic Antioxidants from the Hydro Distillation Residues of Rosemary and Effect of Pretreatment and Extraction Parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef]
- Barbieri, J.B.; Goltz, C.; Cavalheiro, F.B.; Toci, A.T.; Igarashi-Mafra, L.; Mafra, M.R. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind. Crop. Prod. 2020, 144, 112049. [Google Scholar] [CrossRef]
- Wojeicchowski, J.P.; Marques, C.; Igarashi-Mafra, L.; Coutinho, J.A.; Mafra, M.R. Extraction of phenolic compounds from rosemary using choline chloride–based Deep Eutectic Solvents. Sep. Purif. Technol. 2021, 258, 117975. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Sequential extraction of carnosic acid, rosmarinic acid and pigments (carotenoids and chlorophylls) from Rosemary by online supercritical fluid extraction-supercritical fluid chromatography. J. Chromatogr. A 2021, 1639, 461709. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Gligor, O.; Mocan, A.; Moldovan, C.; Locatelli, M.; Crișan, G.; Ferreira, I.C. Enzyme-assisted extractions of polyphenols—A comprehensive review. Trends Food Sci. Technol. 2019, 88, 302–315. [Google Scholar] [CrossRef]
- Song, Y.R.; Han, A.R.; Park, S.G.; Cho, C.W.; Rhee, Y.K.; Hong, H.D. Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int. J. Biol. Macromol. 2020, 153, 169–179. [Google Scholar] [CrossRef]
- Lombardelli, C.; Liburdi, K.; Benucci, I.; Esti, M. Tailored and synergistic enzyme-assisted extraction of carotenoid-containing chromoplasts from tomatoes. Food Bioprod. Process. 2020, 121, 43–53. [Google Scholar] [CrossRef]
- Neta, I.M.R.; de Castro, R.J.S. Enzyme-assisted extraction of biocomponents of lentils (Lens culinaris L.): Effect of process parameters on the recovery of compounds with antioxidant properties. Biocatal. Biotransformation 2020, 38, 15–23. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Nguyen, H.N.T.; Huang, M.Y.; Lin, K.H.; Pham, D.C.; Tran, Y.B.; Su, C.H. Optimization of aqueous enzyme–assisted extraction of rosmarinic acid from rosemary (Rosmarinus officinalis L.) leaves and the antioxidant activity of the extract. J. Food Process. Preserv. 2020, 45, e15221. [Google Scholar]
- Kalantzi, S.; Kekos, D.; Mamma, D. Bioscouring of cotton fabrics by multienzyme combinations: Application of Box–Behnken design and desirability function. Cellulose 2019, 26, 2771–2790. [Google Scholar] [CrossRef]
- Paschos, T.; Louloudi, A.; Papayannakos, N.; Kekos, D.; Mamma, D. Potential of barley straw for high titer bioethanol production applying prehydrolysis and simultaneous saccharification and fermentation at high solid loading. Biofuels 2020. [Google Scholar] [CrossRef]
- Chatzidaki, M.; Kostopoulou, I.; Kourtesi, C.; Pitterou, I.; Avramiotis, S.; Xenakis, A.; Detsi, A. β-Cyclodextrin as carrier of novel antioxidants: A structural and efficacy study. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125262. [Google Scholar] [CrossRef]
- Shannon, E.; Abu-Ghannam, N. Enzymatic extraction of fucoxanthin from brown seaweeds. Int. J. Food Sci. Technol. 2018, 53, 2195–2204. [Google Scholar] [CrossRef] [Green Version]
- Tsakona, S.; Galanakis, C.M.; Gekas, V. Hydro-ethanolic mixtures for the recovery of phenols from Mediterranean plant materials. Food Bioprocess. Technol. 2012, 5, 1384–1393. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L.; Rangel, A.O. Automatic method for the determination of Folin—Ciocalteu reducing capacity in food products. J. Agric. Food Chem. 2006, 54, 5241–5246. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, Y.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Terpinc, P.; Čeh, B.; Ulrih, N.P.; Abramovič, H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crop. Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Pinelo, M.; Zornoza, B.; Meyer, A.S. Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Sep. Purif. Technol. 2008, 63, 620–627. [Google Scholar] [CrossRef]
- Meyer, A.S.; Jepsen, S.M.; Sørensen, N.S. Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace. J. Agric. Food Chem. 1998, 46, 2439–2446. [Google Scholar] [CrossRef]
- Ximenes, E.; Kim, Y.; Mosier, N.; Dien, B.; Ladisch, M. Inhibition of cellulases by phenols. Enzym. Microb. Technol. 2010, 46, 170–176. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.; Sun, D.W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
Enzyme Preparation | Activity (Units/mL of Enzyme Preparation) |
---|---|
Alcalase 2.4L FG | 2.8 |
Cellic CTec2 | 221 |
Viscozyme L | 121 |
Cellic HTec2 | 9685 |
Bioprep 3000 | 417 |
Extraction Method- Hydroethanolic Solvent | DPPH Radical Scavenging Ability IC50 (μg/mL) | TPC (mgGAE/grosemary) |
---|---|---|
CEM-ethanol/water 95:5 v/v | 12.1 ± 0.5 | 4.1 ± 0.4 |
CEM-ethanol/water 70:30 v/v | 16.8 ± 1.2 | 8.5 ± 0.5 |
CEM-ethanol/water 50:50 v/v | 20.6 ± 1.1 | 11.1 ± 0.4 |
MAE-ethanol/water 95:5 v/v | 24.0 ± 1.1 | 3.0 ± 0.3 |
MAE-ethanol/water 70:30 v/v | 19.3 ± 0.9 | 7.0 ± 0.6 |
MAE-ethanol/water 50:50 v/v | 19.2 ± 0.7 | 8.9 ± 0.6 |
Gallic acid | 6.1 ± 0.3 | - |
Enzyme | Ce (mg g−1 Rosemary) | k (g−1 Rosemary·mg−1 min−1) | h (mg·g−1 Rosemary·min−1) |
---|---|---|---|
Cellic Htec2 | 7.4 | 3.6 × 10−3 | 2.0 × 10−1 |
(R2 = 0.991, p < 0.0001) | |||
Cellic Ctec2 | 8.0 | 2.6 × 10−3 | 1.6 × 10−1 |
(R2 = 0.997, p < 0.0001) | |||
Viscozyme L | 8.0 | 2.4 × 10−3 | 1.6 × 10−1 |
(R2 = 0.996, p < 0.0001) | |||
Bioprep 3000L | 10.9 | 1.1 × 10−3 | 1.2 × 10−1 |
(R2 = 0.996, p < 0.0001) | |||
Alcalase 2.4L FG | 10.7 | 1.1 × 10−3 | 1.2 × 10−1 |
(R2 = 0.995, p < 0.0001) |
Enzyme | Extraction Time | |
---|---|---|
t = 1 h | t = 5 h | |
DPPH Radical Scavenging Ability IC50 (μg/mL) | ||
Alcalase 2.4L FG | 32.1 ± 3.4 | 18.9 ± 0.9 |
Cellic CTec2 | 37.9 ± 2.5 | 28.3 ± 1.1 |
Viscozyme L | 46.0 ± 1.4 | 27.2 ± 1.3 |
Cellic HTec2 | 31.1 ± 1.4 | 27.6 ± 1.8 |
Bioprep 3000L | 33.6 ± 2.9 | 13.2 ± 1.4 |
Extraction Method | DPPH Radical Scavenging Ability IC50 (μg/mL) | TPC (mgGAE/grosemary) |
---|---|---|
1 h enzymatic pretreatment + 24 h CEM | 14.3 ± 0.8 | 15.2 ± 0.3 |
5 h enzymatic pretreatment + 24 h CEM | 17.2 ± 1.2 | 13.0 ± 0.5 |
Extraction Method | Ce (mg g−1 Rosemary) | k (g−1 Rosemary·mg−1· min−1) | h (mg·g−1 Rosemary·min−1) |
---|---|---|---|
CEM 50% v/v ethanol | 7.9 | 3.3 × 10−3 | 2.1 × 10−1 |
(R2 = 0.998, p < 0.0001) | |||
ΕAΕ + CEM | 21.2 | 2.6 × 10−4 | 1.2 × 10−1 |
(R2 = 0.998, p < 0.0001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontillo, A.R.N.; Papakosta-Tsigkri, L.; Lymperopoulou, T.; Mamma, D.; Kekos, D.; Detsi, A. Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts. Appl. Sci. 2021, 11, 3724. https://doi.org/10.3390/app11083724
Pontillo ARN, Papakosta-Tsigkri L, Lymperopoulou T, Mamma D, Kekos D, Detsi A. Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts. Applied Sciences. 2021; 11(8):3724. https://doi.org/10.3390/app11083724
Chicago/Turabian StylePontillo, Antonella Rozaria Nefeli, Lydia Papakosta-Tsigkri, Theopisti Lymperopoulou, Diomi Mamma, Dimitris Kekos, and Anastasia Detsi. 2021. "Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts" Applied Sciences 11, no. 8: 3724. https://doi.org/10.3390/app11083724
APA StylePontillo, A. R. N., Papakosta-Tsigkri, L., Lymperopoulou, T., Mamma, D., Kekos, D., & Detsi, A. (2021). Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts. Applied Sciences, 11(8), 3724. https://doi.org/10.3390/app11083724