Unsupervised Cell Segmentation and Labelling in Neural Tissue Images
Abstract
:1. Introduction
2. Methods
2.1. Goals of the Proposed Schema
2.2. Object Segmentation Phase
2.3. Refinement Phase
2.4. Labelling Phase
2.5. General View of the Multi-Phase Schema
3. Context of Application
3.1. Testing Dataset
3.2. Context-Specific Configuration of the USRL Schema
- (i)
- Object Segmentation (OS) phase: OS is performed separately in the DAPI and in the ChAT channel. Regarding the DAPI channel, the aim is to segment the nuclei and inclusions of MNs. To that end, OS is performed with two techniques: thresholding and tone-based clustering. First, thresholding is used to alleviate the negative impact of very bright non-MN nuclei on the subsequent clustering; to that end, a tonal intensity threshold of 0.8 was imposed, considering only just the objects below that value. Next, tone-based clustering is based on the homogeneity of the inclusions and the MN nuclei, using k-means; the tones were separated into four different groups, and the two with medium intensities were selected.Regarding the ChAT channel, the aim is to segment the MNs. With that intent, the OS is performed by self-adapting thresholding. Specifically, we used the Rosin method, as the unimodal tonal distribution in the image matched the thresholding priors of the method [23].
- (ii)
- Refinement phase: REF is performed separately in each of the channels. For the DAPI channel, we discarded those objects smaller than 0.05% of the area of the image. For the ChAT channel, REF is carried out similarly, just adapting the parameters (valid size range) to MN areas. In this case, the valid size was set to 0.12–10% of the area of the image, discarding any other object.
- (iii)
- Labelling phase: The LBL phase combines the refined objects in DAPI and ChAT channels into a single representation. The process is depicted in Figure 6. For each object detected in ChAT, a series of questions are made. First, an object in ChAT is only considered as a candidate if it overlaps objects in DAPI; this corresponds to the idea that each MN must contain a nucleus, and might also contain an inclusion. An object in ChAT is considered valid if (a) it overlaps with an object in DAPI and (b) at least 90% of the area of such an object in DAPI is coincident with the object in ChAT. Applying this condition, the candidate objects are first categorised as an MN candidate with a nucleus (just one object in DAPI within an object in ChAT) or as an MN candidate with a nucleus and inclusion (two objects in DAPI within an object in ChAT). This decision was not based exclusively on the number of objects. The size was used as the second cascading decision, as no nucleus or inclusion can take up more than half of the area of a cell; specifically, DAPI objects must be greater than 5% and smaller than 50% of the ChAT object it overlaps. Note that, if the cell is finally recognised as an MN, each of its parts is individually labelled according to the appearance of its organelles in each of the channels.
4. Experiments
4.1. Quantitative Comparison Measures
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDs | Neurodegenerative Diseases |
USRL | Unsupervised Segmentation Refinement Labelling |
OS | Object Segmentation |
REF | Refinement |
LBL | Labelling |
MN | Motor Neuron |
References
- Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series Introduction: Neurodegeneration: What is it and where are we? J. Clin. Investig. 2003, 111, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Masters, C.; Bateman, R.; Blennow, K.; Rowe, C.; Sperling, R.; Cummings, J. Alzheimer’s disease. Nat. Rev. Dis. Prim. 2015, 1, 15056. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chió, A.; Corr, E.; Logroscino, G.; Robberecht, W.; Shaw, P.; Simmons, Z.; Berg, L. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 2017, 3, 17085. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.; Halliday, G.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A. Parkinson disease. Nat. Rev. Dis. Prim. 2017, 3, 17013. [Google Scholar] [CrossRef]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.; Croteau, D.; Bohr, V. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Abraham, V.C.; Taylor, D.L.; Haskins, J.R. High content screening applied to large-scale cell biology. Trends Biotechnol. 2004, 22, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Boutros, M.; Heigwer, F.; Laufer, C. Microscopy-based high-content screening. Cell 2015, 163, 1314–1325. [Google Scholar] [CrossRef] [Green Version]
- Arrasate, M.; Finkbeiner, S. Automated microscope system for determining factors that predict neuronal fate. Proc. Natl. Acad. Sci. USA 2005, 102, 3840–3845. [Google Scholar] [CrossRef] [Green Version]
- Serio, A.; Bilican, B.; Barmada, S.J.; Ando, D.M.; Zhao, C.; Siller, R.; Burr, K.; Haghi, G.; Story, D.; Nishimura, A.L.; et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc. Natl. Acad. Sci. USA 2013, 110, 4697–4702. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.E.; Yao, Z.; Choi, M.; Tyzack, G.E.; Serio, A.; Luisier, R.; Harley, J.; Preza, E.; Arber, C.; Crisp, S.J.; et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Rep. 2017, 19, 1739–1749. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, C.; Tyzack, G.E.; Taha, D.M.; Devine, H.; Greensmith, L.; Newcombe, J.; Patani, R.; Serio, A.; Luisier, R. Automated and unbiased discrimination of ALS from control tissue at single cell resolution. Brain Pathol. 2021, e12937. [Google Scholar] [CrossRef]
- Tyzack, G.E.; Luisier, R.; Taha, D.M.; Neeves, J.; Modic, M.; Mitchell, J.S.; Meyer, I.; Greensmith, L.; Newcombe, J.; Ule, J.; et al. Widespread FUS mislocalization is a molecular hallmark of ALS. Brain 2019, 142, 2572–2580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Íñigo Marco, I.; Valencia, M.; Larrea, L.; Bugallo, R.; Martínez-Goikoetxea, M.; Zuriguel, I.; Arrasate, M. E46K α-synuclein pathological mutation causes cell-autonomous toxicity without altering protein turnover or aggregation. Proc. Natl. Acad. Sci. USA 2017, 39, E8274–E8283. [Google Scholar] [CrossRef] [Green Version]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.; Kausler, B.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Friebel, A.; Neitsch, J.; Johann, T.; Hammad, S.; Hengstler, J.G.; Drasdo, D.; Hoehme, S. TiQuant: Software for tissue analysis, quantification and surface reconstruction. Bioinformatics 2015, 31, 3234–3236. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, A.; Jones, T.; Lamprecht, M.; Clarke, C.; Kang, I.; Friman, O.; Guertin, D.; Chang, J.; Lindquist, R.; Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef] [Green Version]
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440–456. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Weiss, K.; Khoshgoftaar, T.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1345–1359. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. Threshold selection method for gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Rosin, P.L. Unimodal thresholding. Pattern Recognit. 2001, 34, 2083–2096. [Google Scholar] [CrossRef]
- Ramírez-Ortegón, M.A.; Tapia, E.; Rojas, R.; Cuevas, E. Transition thresholds and transition operators for binarization and edge detection. Pattern Recognit. 2010, 43, 3243–3254. [Google Scholar] [CrossRef]
- Su, B.; Lu, S.; Tan, C.L. Robust document image binarization technique for degraded document images. IEEE Trans. Image Process. 2012, 22, 1408–1417. [Google Scholar]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the IEEE International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 838–846. [Google Scholar]
- Weickert, J. Anisotropic Diffusion in Image Processing; ECMI Series; Teubner-Verlag: Stuttgart, Germany, 1998. [Google Scholar]
- Barash, D. A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Molina, C.; Galar, M.; Bustince, H.; De Baets, B. On the impact of anisotropic diffusion on edge detection. Pattern Recognit. 2014, 47, 270–281. [Google Scholar] [CrossRef]
- Wang, G.; Lopez-Molina, C.; De Baets, B. Automated blob detection using iterative Laplacian of Gaussian filtering and unilateral second-order Gaussian kernels. Digit. Signal Process. 2020, 96, 102592. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Wang, G.; Lopez-Molina, C.; De Baets, B. High-ISO Long-Exposure Image Denoising Based on Quantitative Blob Characterization. IEEE Trans. Image Process. 2020, 29, 5993–6005. [Google Scholar] [CrossRef]
- Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Mokhtarian, F.; Mackworth, A.K. A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 789–805. [Google Scholar] [CrossRef]
- Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image Analysis Using Mathematical Morphology. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 532–550. [Google Scholar] [CrossRef] [PubMed]
- Bibiloni, P.; González-Hidalgo, M.; Massanet, S. A real-time fuzzy morphological algorithm for retinal vessel segmentation. J. Real Time Image Process. 2019, 16, 2337–2350. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.F.L.; Hackenberger, C.P.R. Fluorescent labelling in living cells. Curr. Opin. Biotechnol. 2017, 48, 61–68. [Google Scholar] [CrossRef]
- Cheng, H.D.; Chen, C.; Chiu, H.; Xu, H. Fuzzy homogeneity approach to multilevel thresholding. IEEE Trans. Image Process. 1998, 7, 1084–1086. [Google Scholar] [CrossRef]
- Tang, J.; Peli, E.; Acton, S. Image enhancement using a contrast measure in the compressed domain. IEEE Signal Process Lett. 2003, 10, 289–292. [Google Scholar] [CrossRef]
- Hung, M.C.; Link, W. Protein localization in disease and therapy. J. Cell Sci. 2011, 124, 3381–3392. [Google Scholar] [CrossRef] [Green Version]
- Unnikrishnan, R.; Pantofaru, C.; Hebert, M. Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 929–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.; Liu, Q.; Liu, Q.; Ji, C.; Li, X. A novel approach for edge detection based on the theory of universal gravity. Pattern Recognit. 2007, 40, 2766–2775. [Google Scholar] [CrossRef]
- Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1915–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, M.; Poggio, T. A contour-based moving object detection and tracking. In Proceedings of the International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Beijing, China, 15–16 October 2005; pp. 271–276. [Google Scholar]
- Sim, D.G.; Kwon, O.K.; Park, R.H. Object matching algorithms using robust Hausdorff distance measures. IEEE Trans. Image Process. 1999, 8, 425–429. [Google Scholar] [PubMed]
- Baddeley, A.J. An error metric for binary images. In Robust Computer Vision: Quality of Vision Algorithms; Wichmann Verlag: Karlsruhe, Germany, 1992. [Google Scholar]
- Brunet, D.; Sills, D. A Generalized Distance Transform: Theory and Applications to Weather Analysis and Forecasting. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1752–1764. [Google Scholar] [CrossRef]
- Gimenez, J.; Martinez, J.; Flesia, A.G. Unsupervised edge map scoring: A statistical complexity approach. Comput. Vis. Image Underst. 2014, 122, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Estrada, F.J.; Jepson, A.D. Quantitative evaluation of a novel image segmentation algorithm. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005; Volume 2, pp. 1132–1139. [Google Scholar]
- Martin, D.; Fowlkes, C.; Malik, J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 530–549. [Google Scholar] [CrossRef]
- Warfield, S.K.; Zou, K.H.; Wells, W.M. Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 2004, 23, 903–921. [Google Scholar] [CrossRef] [Green Version]
- Asman, A.; Landman, B. Robust Statistical Label Fusion through Consensus Level, Labeler Accuracy and Truth Estimation (COLLATE). IEEE Trans. Med. Imaging 2011, 30, 1779–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Molina, C.; De Baets, B.; Bustince, H. Quantitative error measures for edge detection. Pattern Recognit. 2013, 46, 1125–1139. [Google Scholar] [CrossRef]
- Lopez-Molina, C.; Marco-Detchart, C.; Bustince, H.; De Baets, B. A survey on matching strategies for boundary image comparison and evaluation. Pattern Recognit. 2021, 115, 107883. [Google Scholar] [CrossRef]
ilastik | magnolia | |
---|---|---|
Prec | 0.346 | 0.537 |
Rec | 0.467 | 0.324 |
F | 0.398 | 0.404 |
Nuclei | Cytoplasms | Inclusions | ||||
---|---|---|---|---|---|---|
ilastik | MagNoLia | ilastik | MagNoLia | ilastik | MagNoLia | |
Prec | 0.348 | 0.438 | 0.439 | 0.513 | 0.286 | 0.689 |
Rec | 0.390 | 0.238 | 0.364 | 0.375 | 0.697 | 0.269 |
F | 0.367 | 0.308 | 0.398 | 0.433 | 0.406 | 0.387 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Rey, S.; Antunes-Santos, F.; Hagemann, C.; Gómez-Cabrero, D.; Bustince, H.; Patani, R.; Serio, A.; De Baets, B.; Lopez-Molina, C. Unsupervised Cell Segmentation and Labelling in Neural Tissue Images. Appl. Sci. 2021, 11, 3733. https://doi.org/10.3390/app11093733
Iglesias-Rey S, Antunes-Santos F, Hagemann C, Gómez-Cabrero D, Bustince H, Patani R, Serio A, De Baets B, Lopez-Molina C. Unsupervised Cell Segmentation and Labelling in Neural Tissue Images. Applied Sciences. 2021; 11(9):3733. https://doi.org/10.3390/app11093733
Chicago/Turabian StyleIglesias-Rey, Sara, Felipe Antunes-Santos, Cathleen Hagemann, David Gómez-Cabrero, Humberto Bustince, Rickie Patani, Andrea Serio, Bernard De Baets, and Carlos Lopez-Molina. 2021. "Unsupervised Cell Segmentation and Labelling in Neural Tissue Images" Applied Sciences 11, no. 9: 3733. https://doi.org/10.3390/app11093733
APA StyleIglesias-Rey, S., Antunes-Santos, F., Hagemann, C., Gómez-Cabrero, D., Bustince, H., Patani, R., Serio, A., De Baets, B., & Lopez-Molina, C. (2021). Unsupervised Cell Segmentation and Labelling in Neural Tissue Images. Applied Sciences, 11(9), 3733. https://doi.org/10.3390/app11093733