Sequential Analysis of Trace Elements in a Micro Volume Urine Sample Using Inductively Coupled Plasma Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents
2.3. Samples
2.4. Calibration and Sample Preparation
2.5. Data Validation and Statistics
2.6. External Quality Assessment
3. Results and Discussion
3.1. Matrix Interference
3.2. Sample Preparation and Digestion
3.3. Validation
3.4. Linearity and Slope
3.5. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.6. Repeatability, Accuracy and Precision
3.7. External Quality Assurance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kruse, J.A. Clinical Methods: The History, Physical, and Laboratory Examinations. JAMA 1990, 264, 2808. [Google Scholar] [CrossRef]
- Sears, M.E. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review. Sci. World J. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gallieni, M.; Brancaccio, D.; Cozzolino, M.; Sabbioni, E. Trace elements in renal failure: Are they clinically important? Nephrol. Dial. Transplant. 1996, 11, 1232–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbazian, H.; Absalan, A.; Jalali, M.T.; Mastipour, F.; Kaydani, G.A.; Zayeri, Z.D. Comparison of zinc, copper, selenium, magnesium, aluminium and lead blood concentrations in end-stage renal disease patients and healthy volunteers in Ahvaz, southwest of Iran. Russ. Open Med. J. 2018, 7, e0105. [Google Scholar] [CrossRef]
- Thomson, N.M.; Stevens, B.J.; Humphery, T.J.; Atkins, R.C. Comparison of trace elements in peritoneal dialysis, hemodialysis, and uremia. Kidney Int. 1983, 23, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Dashtizadeh, M.; Kamani, H.; Ashrafi, S.D.; Panahi, A.H.; Mahvi, A.H.; Balarak, D.; Hoseini, M.; Ansari, H.; Bazrafshan, E.; Parsafar, F. Human health risk assessment of trace elements in drinking tap water in Zahedan city, Iran. J. Environ. Health Sci. Eng. 2019, 17, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Mirabella, F.; Martínez, M.Á.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part B: Predictors of exposure. Environ. Res. 2020, 182, 109108. [Google Scholar] [CrossRef]
- Jin, J.; Mulesa, L.; Rouillet, M.C. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician. Nutrients 2017, 9, 440. [Google Scholar] [CrossRef]
- Burjonrappa, S.C.; Miller, M. Role of trace elements in parenteral nutrition support of the surgical neonate. J. Pediatr. Surg. 2012, 47, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Guendouzi, Y.; Soualili, D.L.; Fowler, S.W.; Boulahdid, M. Environmental and human health risk assessment of trace metals in the mussel ecosystem from the Southwestern Mediterranean. Mar. Pollut. Bull. 2020, 151, 110820. [Google Scholar] [CrossRef]
- Hu, Y.; Xiao, T.; Wang, Q.; Liang, B.; Zhang, A. Effects of Essential Trace Elements and Oxidative Stress on Endemic Arsenism Caused by Coal Burning in PR China. Biol. Trace Elem. Res. 2020, 198, 25–36. [Google Scholar] [CrossRef]
- Diaz, D.; Fonseca, V.; Aude, Y.W.; Lamas, G.A. Chelation therapy to prevent diabetes-associated cardiovascular events. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.O.; Schulman-Marcus, J.; Nichols, E.L.; Newman, J.D.; Bangalore, S.; Farkouh, M.; Sidhu, M.S. Chelation Therapy as a Cardiovascular Therapeutic Strategy: The Rationale and the Data in Review. Cardiovasc. Drugs Ther. 2017, 31, 619–625. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Stevenson, S.W.; Silove, N.; Williams, K. Chelation for autism spectrum disorder (ASD). Cochrane Database Syst. Rev. 2015, 5, CD010766. [Google Scholar] [CrossRef] [PubMed]
- Dusek, P.; Schneider, S.A.; Aaseth, J. Iron chelation in the treatment of neurodegenerative diseases. J. Trace Elem. Med. Biol. 2016, 38, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Mondal, S.; Mukherjee, R.; Maity, J. Removal of Heavy Metals from the Body System by Chelation Therapy. Nanomed. Nanotechnol. J. 2018, 2, 120. [Google Scholar]
- Exley, C. The toxicity of aluminium in humans. Morphologie 2016, 100, 51–55. [Google Scholar] [CrossRef]
- Demirkaya, K.; Demirdöğen, B.C.; Torun, Z.Ö.; Erdem, O.; Çırak, E.; Tunca, Y.M. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements. Hum. Exp. Toxicol. 2017, 36, 1071–1080. [Google Scholar] [CrossRef]
- Tripathi, D.; Mani, V.; Pal, R.P. Vanadium in Biosphere and Its Role in Biological Processes. Biol. Trace Elem. Res. 2018, 186, 52–67. [Google Scholar] [CrossRef]
- Rehder, D. The role of vanadium in biology. Metallomics 2015, 7, 730–742. [Google Scholar] [CrossRef] [Green Version]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci 2018, 1, 1655–1679. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.J.; Holmes, A.L.; Kandpal, S.K.; Mason, M.D.; Zheng, T.; Wise, J.P. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells. Toxicol. Appl. Pharmacol. 2014, 278, 259–265. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Nishito, Y.; Kambe, T. Absorption Mechanisms of Iron, Copper, and Zinc: An Overview. J. Nutr. Sci. Vitaminol. 2018, 64, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumaa, P. Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett. 2013, 587, 1902–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2017, 68, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, C.E.; Jung, L.C.; Olufadi, R.; Walker, V. Twenty-four-hour urinary trace element excretion: Reference intervals and interpretive issues. Ann. Clin. Biochem. 2012, 49, 341–351. [Google Scholar] [CrossRef]
- Komaromy-Hiller, G.; Ash, K.O.; Costa, R.; Howerton, K. Comparison of representative ranges based on U.S. patient popu-lation and literature reference intervals for urinary trace elements. Clin. Chim. Acta 2000, 296, 71–90. [Google Scholar] [CrossRef]
- Tietz, N.W. (Ed.) Clinical Guide to Laboratory Tests, 3rd ed.; W.B. Saunders: Philadelphia, PA, USA, 1995. [Google Scholar]
- Iyengar, G.V. Reevaluation of the trace element content in Reference Man. Radiat. Phys. Chem. 1998, 51, 545–560. [Google Scholar] [CrossRef]
- Wilschefski, S.C.; Baxter, M.R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, H.; Wang, Y.; Shao, Y.; Liu, J.; Xing, M. Arsenic-induced cardiotoxicity correlates with mitochondrial damage and trace elements imbalance in broiler chickens. Poult. Sci. 2018, 98, 734–744. [Google Scholar] [CrossRef]
- Alamolhodaei, N.S.; Shirani, K.; Karimi, G. Arsenic cardiotoxicity: An overview. Environ. Toxicol. Pharmacol. 2015, 40, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Maret, W.; Moulis, J.-M. The Bioinorganic Chemistry of Cadmium in the Context of Its Toxicity. Met. Ions Life Sci. 2013, 11, 1–29. [Google Scholar] [PubMed]
- Clemens, S.; Ma, J.F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, K.-Y.; Gajek, R. Determination of trace elements in human urine by ICP-MS using sodium chloride as a matrix-matching component in calibration. Anal. Methods 2016, 8, 6754–6763. [Google Scholar] [CrossRef]
- Moore, R.E.T.; Rehkämper, M.; Kreissig, K.; Strekopytov, S.; Larner, F. Determination of major and trace element variability in healthy human urine by ICP-QMS and specific gravity normalisation. RSC Adv. 2018, 8, 38022–38035. [Google Scholar] [CrossRef] [Green Version]
- Heitland, P.; Köster, H.D. Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. J. Anal. At. Spectrom. 2004, 19, 1552–1558. [Google Scholar] [CrossRef]
- May, T.W.; Wiedmeyer, R.H. A Table of Polyatomic Interferences in ICP-MS; ASPND7; Atomic Spectroscopy Press Ltd.: Hong Kong, China, 1998; Volume 19, pp. 143–186. ISSN 0195-5373. [Google Scholar]
- Welna, M.; Szymczycha-Madeja, A.; Pohl, P. Quality of the Trace Element Analysis: Sample Preparation Steps. In Wide Spectra of Quality Control; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Chiu, M.L.; Lawi, W.; Snyder, S.T.; Wong, P.K.; Liao, J.C.; Gau, V. Matrix Effects—A Challenge Toward Automation of Molecular Analysis. J. Assoc. Lab. Autom. 2010, 15, 233–242. [Google Scholar] [CrossRef]
- Burden, T.J.; Whitehead, M.W.; Thompson, R.P.H.; Powell, J.J. Preparation of urine samples for trace metal de-termination: A study with aluminium analysis by inductively coupled plasma optical emission spectrometry. Ann. Clin. Biochem. 1998, 35, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Heitland, P.; Köster, H.D. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin. Chim. Acta 2006, 365, 310–318. [Google Scholar] [CrossRef]
- Bornhorst, J.A.; Hunt, J.W.; Urry, F.M.; McMillin, G.A. Comparison of Sample Preservation Methods for Clinical Trace Element Analysis by Inductively Coupled Plasma Mass Spectrometry. Am. J. Clin. Pathol. 2005, 123, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Matusiewicz, H. Sample Preparation for Inorganic Trace Element Analysis. Phys. Sci. Rev. 2017, 2, 20178001. [Google Scholar] [CrossRef] [Green Version]
- ICH Guideline Q2(R1): Validation of Analytical Procedures: Text and Methodology, November 2005. Available online: https://www.gmp-navigator.com/guidelines/gmp-guideline/ich-q2r1-validation-of-analytical-procedures-text-and-methodology (accessed on 18 April 2021).
- Rambla-Alegre, M.; Esteve-Romero, J.; Carda-Broch, S. Is it really necessary to validate an analytical method or not? That is the question. J. Chromatogr. A 2012, 1232, 101–109. [Google Scholar] [CrossRef] [PubMed]
- The Commission of the European Communities. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/ EC). Off. J. Eur. Commun. 2002, L221, 8–36. [Google Scholar]
- Van Loco, J.; Elskens, M.; Croux, C.; Beernaert, H. Linearity of calibration curves: Use and misuse of the correlation coefficient. Accredit. Qual. Assur. 2002, 7, 281–285. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 29, S49. [Google Scholar]
- Batista, B.L.; Rodrigues, J.L.; Nunes, J.A.; Tormen, L.; Curtius, A.J.; Barbosa, F., Jr. Simultaneous determination of Cd, Cu, Mn, Ni, Pb and Zn in nail samples by inductively coupled plasma mass spectrometry (ICP-MS) after tetramethylammonium hydroxide solubilization at room temperature: Comparison with ETAAS. Talanta 2008, 76, 575–579. [Google Scholar] [CrossRef]
- Bokowski, L.V.; Sobrinho, R.B.; Armijo, C.J.; Dani, C.; Henriques, J.A.; Funchal, C. Method validation for determination of metals in Vitis labrusca L. grapevine leaf extracts by inductively coupled plasma mass spectrometry (ICP-MS). An. Acad. Bras. Ciências 2016, 88, 2247–2255. [Google Scholar] [CrossRef] [Green Version]
- Freire, B.M.; Pedron, T.; Lange, C.N.; Sanches, L.R.; Barcelos, G.R.M.; Filho, W.R.P.; Batista, B.L. Calibration for the determination of 19 trace elements in serum and urine. Toxicol. Environ. Chem. 2018, 100, 395–412. [Google Scholar] [CrossRef]
- Pruszkowski, E.; Neubauer, K. The Analysis of Urine for Trace Elements Using the NexION 2000 ICP-MS; Application Note, ICP—Mass Spectrometry; PerkinElmer Inc.: Shelton, CT, USA, 2017. [Google Scholar]
- Yang, Z.; Yu, A. Determination of Fifteen Trace Elements in Human Urine by Microwave Digestion Inductively Coupled Plasma Mass Spectrometry. Anal. Test. Technol. Instrum. 2003, 2, 98–100. [Google Scholar]
- Soubhia, P.C.; De Capitani, E.M.; Tiglea, P. Multi-Element Analysis of Some Toxic Metals in Urine using Quadrupole ICP-MS. Asian J. Chem. Pharm. Sci. 2017, 2, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Marco, P.L.M.; Hernandez Caraballo, E.A. Direct analysis of biological samples by total reflection X-ray fluorescence. Spectrochim. Acta B 2004, 59, 1077. [Google Scholar] [CrossRef]
- Minnich, M.G.; Mille, D.C.; Parsons, P.J. Determination of As, Cd, Pb, and Hg in urine using inductively coupled plasma mass spectrometry with the direct injection high efficiency nebulizer. Spectrochim. Acta B 2008, 63, 389. [Google Scholar] [CrossRef]
- Matson, P.L. Internal quality control and external quality assurance in the IVF laboratory. Hum. Reprod. 1998, 13, 156–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Standards Organization. ISO—Medical Laboratories: Particular Requirements for Quality and Competence; International Organization for Standardization: Geneva, Switzerland, 2003. [Google Scholar]
- U.S. Public Health Service; U.S. Health Care Financing Administration. Medicare, Medicaid, and Clinical Laboratories Improvement Act (CLIA) patient confidentiality rules; proposed rule. Fed. Regist. 1988, 53, 10404–10406. [Google Scholar]
Element | Physiological Ranges (µg L−1) | Reference |
---|---|---|
Al | <22.00 | [28] |
V | <16.15 | [28] |
Cr | 0.49–6.70 | [29] |
Mn | <7.80 | [28] |
Fe | <70.00 | [30] |
Co | 0.77–4.40 | [28] |
Cu | 29.99–59.99 | [31] |
Zn | 310.73–468.64 | [31] |
As | <70.00 | [29] |
Se | 12.16–52.67 | [28] |
Mo | 19.95–28.97 | [31] |
Cd | 1.00–4.90 | [31] |
Sn | 0.99–2.00 | [31] |
Ba | <3.99 | [31] |
Tl | 0.10–1.00 | [31] |
Pb | <2072 | [32] |
Operating Condition | Value |
---|---|
Extract 2 | −240 V |
Omega Bias | −90 V |
Omega Lens | 7.6 V |
Deflect | −1.6 V |
He flow | 4.3 mL min−1 |
H2 flow | 6.0 mL min−1 |
OctP RF | 200 V |
Forward Power | 1550 W |
Auxiliary gas flow | 0.9 L min−1 |
Nebulizer gas flow | 1.0 L min−1 |
Nebulizer type | MicroMist |
Sample introduction | PeriPump |
Ion lens | x-Lens |
Replicates | 3 |
Integration m/z | ||||
---|---|---|---|---|
Mass | Element | No Gas Mode | He Mode | H2 Mode |
27 | Al | - | 0.500 | - |
51 | V | - | 0.500 | - |
52 | Cr | - | 0.500 | - |
55 | Mn | 0.100 | - | - |
56 | Fe | - | - | 0.500 |
59 | Co | - | 0.500 | - |
63 | Cu | - | 0.500 | - |
66 | Zn | - | 0.500 | - |
75 | As | - | 0.500 | - |
78 | Se | - | - | 0.500 |
95 | Mo | 0.100 | - | - |
103 | Rh | 0.100 | 0.500 | 0.500 |
111 | Cd | - | 0.500 | - |
118 | Sn | 0.100 | - | - |
137 | Ba | 0.100 | - | - |
193 | Ir | 0.100 | 0.300 | 0.500 |
205 | TI | 0.100 | - | - |
208 | Pb | 0.100 | - | - |
Concentration Levels for the Internal Quality Control | ||||
---|---|---|---|---|
Lower Level | Upper Level | |||
Element | Obtained Value (µg L−1) | Acceptance Range (µg L−1) | Obtained Value (µg L−1) | Acceptance Range (µg L−1) |
Al | 7.50 | 6.00–9.00 | 100.00 | 85.00–115.00 |
V | 0.13 | 0.10–0.15 | 23.10 | 18.40–27.70 |
Cr | 7.70 | 6.20–9.30 | 30.40 | 27.70–33.20 |
Mn | 0.33 | 0.26–0.40 | 9.30 | 7.40–11.20 |
Fe | 4.20 | 3.40–5.00 | 61.00 | 48.80–73.30 |
Co | 0.19 | 0.15–0.23 | 12.80 | 10.20–15.30 |
Cu | 26.00 | 24.00–28.00 | 61.00 | 48.80–73.30 |
Zn | 171.00 | 136.00–205.00 | 1179.00 | 984.00–1374.00 |
As | 97.00 | 77.00–116.00 | 198.00 | 173.00–223.00 |
Se | 10.50 | 8.40–12.60 | 66.20 | 51.90–80.40 |
Mo | 17.00 | 13.60–20.40 | 73.80 | 68.10–79.50 |
Cd | 0.62 | 0.49–0.74 | 4.70 | 3.70–5.60 |
Sn | 2.40 | 1.90–2.80 | 46.00 | 36.80–55.30 |
Ba | 3.60 | N/A | 21.50 | N/A |
Tl | 0.11 | 0.10–0.11 | 8.40 | 6.87–10.00 |
Pb | 1.51 | 1.20–1.81 | 78.40 | 70.40–86.40 |
Analyte | Validation Range (µg L−1) | R2 | Slope |
---|---|---|---|
Al | 11.33–87.10 | 0.9925 | 1.0068 |
V | 6.93–50.90 | 0.9954 | 0.9899 |
Cr | 1.35–19.90 | 0.9955 | 0.9469 |
Mn | 2.77–19.90 | 0.9953 | 0.9418 |
Fe | 21.45–222.00 | 0.9965 | 0.9469 |
Co | 0.68–34.30 | 0.9931 | 0.9102 |
Cu | 18.87–111.00 | 0.9961 | 1.0062 |
Zn | 68.67–531.00 | 0.9936 | 1.0386 |
As | 14.50–82.30 | 0.9985 | 0.9701 |
Se | 11.60–89.30 | 0.98 | 1.0151 |
Mo | 7.97–99.30 | 0.9988 | 1.0077 |
Cd | 0.82–14.30 | 0.9999 | 0.889 |
Sn | 1.71–10.00 | 0.9982 | 0.954 |
Ba | 3.60–51.30 | 0.9984 | 0.9716 |
TI | 2.27–17.70 | 0.9988 | 0.8703 |
Pb | 9.17–54.40 | 0.9926 | 0.9593 |
Analyte | LOD (µg L−1) | LOQ (µg L−1) |
---|---|---|
Al | 7.90 | 23.94 |
V | 2.77 | 8.41 |
Cr | 0.29 | 0.87 |
Mn | 0.72 | 2.17 |
Fe | 5.50 | 16.65 |
Co | 2.18 | 6.60 |
Cu | 3.83 | 11.61 |
Zn | 10.48 | 31.75 |
As | 2.42 | 7.34 |
Se | 3.56 | 10.80 |
Mo | 1.05 | 3.19 |
Cd | 0.11 | 0.33 |
Sn | 0.22 | 0.66 |
Ba | 0.42 | 1.28 |
Tl | 0.46 | 1.39 |
Pb | 4.19 | 12.69 |
Analyte | Theoretical Concentration (µg L−1) | Measured Concentration (µg L−1) ± SD | Accuracy (%) ± SD | Intra-Day Cv (%) | Inter-Day Cv (%) |
---|---|---|---|---|---|
Al | 11.33 | 9.49 ± 0.58 | 119.39 ± 7.19 | 4.28 | 6.06 |
17.00 | 15.66 ± 1.43 | 109.34 ± 10.62 | 3.94 | 9.22 | |
34.00 | 35.38 ± 1.15 | 96.09 ± 3.14 | 5.50 | 3.26 | |
43.55 | 47.87 ± 1.71 | 90.97 ± 3.19 | 5.52 | 3.58 | |
87.10 | 85.59 ± 2.51 | 101.77 ± 2.93 | 5.16 | 2.93 | |
V | 6.93 | 5.77 ± 0.23 | 120.17 ± 5.04 | 3.33 | 4.06 |
10.40 | 9.09 ± 0.52 | 114.42 ± 3.70 | 1.69 | 5.72 | |
20.80 | 19.00 ± 1.28 | 109.49 ± 3.19 | 12.32 | 6.72 | |
25.45 | 21.80 ± 0.95 | 116.77 ± 5.22 | 0.83 | 4.37 | |
50.90 | 49.15 ± 4.04 | 103.56 ± 9.11 | 4.22 | 8.23 | |
Cr | 1.35 | 1.23 ± 0.08 | 109.24 ± 7.05 | 9.50 | 6.35 |
2.02 | 2.06 ± 0.08 | 98.13 ± 3.70 | 5.54 | 3.69 | |
4.04 | 4.05 ± 0.13 | 99.86 ± 3.19 | 12.90 | 3.15 | |
9.95 | 9.38 ± 0.43 | 106.13 ± 4.98 | 4.89 | 4.55 | |
19.90 | 18.90 ± 0.22 | 105.30 ± 1.25 | 3.31 | 1.18 | |
Mn | 2.77 | 2.66 ± 0.01 | 104.28 ± 0.36 | 10.73 | 0.35 |
4.16 | 4.33 ± 0.24 | 96.00 ± 5.43 | 6.49 | 5.57 | |
8.32 | 8.37 ± 0.17 | 99.39 ± 1.94 | 2.86 | 1.99 | |
9.95 | 9.39 ± 0.22 | 105.95 ± 2.39 | 0.81 | 2.30 | |
19.90 | 18.84 ± 1.29 | 105.65 ± 7.61 | 0.34 | 6.85 | |
Fe | 14.30 | 13.20 ± 1.23 | 108.30 ± 10.73 | 0.16 | 9.33 |
21.45 | 21.87 ± 3.99 | 98.10 ± 9.30 | 2.78 | 10.42 | |
42.90 | 44.89 ± 0.71 | 95.56 ± 1.49 | 7.99 | 1.58 | |
111.00 | 103.58 ± 10.75 | 107.16 ± 2.27 | 4.01 | 6.68 | |
222.00 | 211.78 ± 14.15 | 104.83 ± 7.32 | 1.62 | 9.33 | |
Co | 0.68 | 0.45 ± 0.07 | 150.73 ± 2.73 | 1.64 | 12.93 |
1.02 | 0.87 ± 0.09 | 116.19 ± 3.45 | 6.47 | 10.20 | |
2.03 | 1.88 ± 0.15 | 107.98 ± 6.83 | 1.38 | 8.65 | |
17.15 | 15.36 ± 0.46 | 111.65 ± 4.26 | 2.06 | 3.40 | |
34.30 | 31.64 ± 3.99 | 108.41 ± 6.12 | 10.98 | 12.63 | |
Cu | 18.87 | 16.53 ± 0.39 | 114.16 ± 2.67 | 6.49 | 2.35 |
28.30 | 25.59 ± 1.92 | 110.58 ± 8.51 | 1.87 | 7.51 | |
55.50 | 50.23 ± 2.39 | 110.48 ± 2.20 | 0.98 | 2.11 | |
56.60 | 54.14 ± 1.14 | 104.54 ± 5.33 | 3.22 | 4.76 | |
111.00 | 108.08 ± 5.20 | 102.70 ± 5.11 | 4.48 | 4.82 | |
Zn | 68.67 | 64.22 ± 23.97 | 106.93 ± 12.72 | 4.01 | 12.48 |
103.00 | 91.27 ± 23.42 | 112.85 ± 2.68 | 0.57 | 2.81 | |
206.00 | 196.12 ± 9.69 | 105.04 ± 5.37 | 2.83 | 4.94 | |
265.50 | 261. 35 ± 11.56 | 101.59 ± 4.64 | 1.08 | 4.42 | |
531.00 | 534.99 ± 1.63 | 99.25 ± 0.30 | 0.88 | 0.31 | |
As | 14.50 | 12.16 ± 0.79 | 119.29 ± 7.52 | 9.58 | 6.48 |
21.75 | 20.15 ± 0.64 | 107.93 ± 3.38 | 4.06 | 3.20 | |
41.15 | 37.54 ± 1.36 | 109.61 ± 4.53 | 3.54 | 4.23 | |
43.50 | 41.60 ± 1.76 | 104.58 ± 3.91 | 0.93 | 3.63 | |
82.30 | 77.88 ± 0.90 | 105.68 ± 1.23 | 0.96 | 1.15 | |
Se | 11.60 | 6.83 ± 0.32 | 128.73 ± 7.89 | 1.59 | 4.71 |
17.40 | 15.12 ± 0.37 | 115.04 ± 2.81 | 5.02 | 2.44 | |
34.80 | 33.07 ± 0.68 | 105.24 ± 2.12 | 3.00 | 2.04 | |
44.65 | 42.11 ± 3.19 | 106.04 ± 8.51 | 3.84 | 7.59 | |
89.30 | 85.32 ± 3.90 | 104.67 ± 4.64 | 1.30 | 4.57 | |
Mo | 7.97 | 7.74 ± 0.36 | 102.87 ± 4.94 | 10.16 | 4.71 |
11.95 | 11.53 ± 0.66 | 103.64 ± 5.74 | 3.95 | 5.68 | |
23.90 | 23.17 ± 1.66 | 103.16 ± 7.22 | 9.70 | 7.17 | |
49.65 | 48.68 ± 1.11 | 102.00 ± 2.32 | 1.06 | 2.28 | |
99.30 | 99.51 ± 1.99 | 99.78 ± 2.01 | 3.33 | 2.00 | |
Cd | 0.82 | 0.73 ± 0.11 | 115.22 ± 10.52 | 9.85 | 10.12 |
1.24 | 1.07 ± 0.14 | 114.30 ± 7.54 | 1.38 | 12.86 | |
2.47 | 2.19 ± 0.04 | 112.65 ± 1.89 | 9.08 | 1.69 | |
7.15 | 6.43 ± 0.44 | 111.11 ± 7.34 | 6.93 | 6.77 | |
14.30 | 12.68 ± 0.35 | 108.37 ± 3.12 | 5.79 | 2.76 | |
Sn | 1.71 | 1.51 ± 0.08 | 114.02 ± 6.47 | 7.65 | 5.41 |
2.57 | 2.17 ± 0.11 | 118.50 ± 6.10 | 3.54 | 5.24 | |
5.00 | 4.39 ± 0.31 | 109.16 ± 8.05 | 1.76 | 7.70 | |
5.14 | 4.71 ± 0.36 | 113.82 ± 8.27 | 8.36 | 7.13 | |
10.00 | 9.23 ± 0.71 | 108.37 ± 8.86 | 3.66 | 7.69 | |
Ba | 3.60 | 3.44 ± 0.24 | 104.64 ± 7.04 | 5.74 | 7.08 |
5.40 | 5.48 ± 0.13 | 98.58 ± 2.30 | 1.66 | 2.32 | |
10.80 | 10.31 ± 0.27 | 104.73 ± 2.81 | 7.13 | 2.64 | |
25.65 | 24.72 ± 0.86 | 103.74 ± 3.62 | 0.89 | 3.47 | |
51.30 | 49.81 ± 2.65 | 102.99 ± 5.38 | 2.79 | 5.33 | |
TI | 2.27 | 2.18 ± 0.05 | 103.89 ± 2.17 | 0.95 | 2.13 |
3.40 | 3.15 ± 0.04 | 107.93 ± 1.40 | 5.11 | 1.30 | |
6.80 | 6.16 ± 0.26 | 110.31 ± 4.64 | 0.97 | 4.26 | |
8.85 | 7.57 ± 0.17 | 113.84 ± 2.67 | 2.90 | 2.27 | |
17.70 | 15.61 ± 0.34 | 113.41 ± 2.47 | 2.73 | 2.20 | |
Pb | 9.17 | 7.80 ± 0.33 | 117.56 ± 5.16 | 5.59 | 4.34 |
13.75 | 11.51 ± 1.05 | 119.46 ± 2.16 | 2.00 | 9.23 | |
27.20 | 22.17 ± 1.16 | 105.55 ± 3.84 | 1.62 | 3.72 | |
27.50 | 26.05 ± 0.97 | 105.56 ± 6.23 | 5.19 | 5.21 | |
54.40 | 50.38 ± 6.06 | 107.99 ± 5.97 | 1.37 | 12.04 |
Analyte | Sample | Unit | Measured Value | Theoretical Value | Lower Limit | Upper Limit | Deviation (%) | Z-Score | Criteria Fulfilled |
---|---|---|---|---|---|---|---|---|---|
Al | 61 | µg L−1 | 26.90 | 32.00 | 20.5 | 43.50 | −16.10 | −1.03 | + |
62 | 49.60 | 63.60 | 40.70 | 86.50 | −22.00 | −1.31 | + | ||
Cr | 61 | µg L−1 | 4.75 | 5.09 | 3.26 | 6.92 | −6.70 | −0.80 | + |
62 | 2.37 | 2.68 | 1.72 | 3.65 | −11.60 | −0.94 | + | ||
Mn | 61 | µg L−1 | 10.30 | 9.89 | 6.33 | 13.50 | 4.00 | 0.41 | + |
62 | 2.48 | 2.73 | 1.75 | 3.71 | −9.20 | −0.59 | + | ||
Fe | 61 | µg L−1 | 0.20 | - | - | <33.00 | - | −0.86 | + |
62 | 750 | 749 | 479.00 | 1019.00 | 0.011 | 0.01 | + | ||
Co | 61 | µg L−1 | 1.29 | 1.47 | 0.94 | 2.00 | −12.20 | −1.57 | + |
62 | 2.54 | 2.85 | 1.82 | 3.88 | −10.90 | −1.35 | + | ||
Cu | 61 | µg L−1 | 67.50 | 67.60 | 43.30 | 91.90 | −0.10 | −0.01 | + |
62 | 5.70 | 6.36 | 4.07 | 8.65 | −10.40 | −0.34 | + | ||
Zn | 61 | mg L−1 | 0.42 | 0.43 | 0.27 | 0.58 | −1.10 | −0.11 | + |
62 | 0.12 | 0.12 | 0.07 | 0.16 | 0.30 | 0.02 | + | ||
As | 61 | µg L−1 | 75.60 | 79.30 | 50.80 | 108.00 | −4.60 | −0.79 | + |
62 | 21.90 | 23.30 | 14.90 | 31.70 | −6.00 | −0.86 | + | ||
Cd | 61 | µg L−1 | 3.38 | 4.95 | 3.17 | 6.73 | −3.90 | −3.90 | + |
62 | 0.68 | 1.02 | 0.65 | 1.39 | −2.60 | −2.60 | + | ||
Pb | 61 | µg L−1 | 43.50 | 48.60 | 31.10 | 66.10 | −10.50 | −1.02 | + |
62 | 139.00 | 149.00 | 95.40 | 203.00 | −6.80 | −0.72 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laur, N.; Kaiser, L.; Deigner, H.-P.; Kinscherf, R. Sequential Analysis of Trace Elements in a Micro Volume Urine Sample Using Inductively Coupled Plasma Mass Spectrometry. Appl. Sci. 2021, 11, 3740. https://doi.org/10.3390/app11093740
Laur N, Kaiser L, Deigner H-P, Kinscherf R. Sequential Analysis of Trace Elements in a Micro Volume Urine Sample Using Inductively Coupled Plasma Mass Spectrometry. Applied Sciences. 2021; 11(9):3740. https://doi.org/10.3390/app11093740
Chicago/Turabian StyleLaur, Nico, Lars Kaiser, Hans-Peter Deigner, and Ralf Kinscherf. 2021. "Sequential Analysis of Trace Elements in a Micro Volume Urine Sample Using Inductively Coupled Plasma Mass Spectrometry" Applied Sciences 11, no. 9: 3740. https://doi.org/10.3390/app11093740
APA StyleLaur, N., Kaiser, L., Deigner, H. -P., & Kinscherf, R. (2021). Sequential Analysis of Trace Elements in a Micro Volume Urine Sample Using Inductively Coupled Plasma Mass Spectrometry. Applied Sciences, 11(9), 3740. https://doi.org/10.3390/app11093740