Experimental Study on Slender CFRP-Confined Circular RC Columns under Axial Compression
Abstract
:1. Introduction
2. Experimental Program
2.1. Details of Test Columns
2.2. Material Properties
2.3. Testing Procedure and Instrumentation
3. Experimental Results and Discussion
3.1. Unwrapped Specimens
3.2. CFRP Wrapped Specimens
4. Comparisons for FRP-Confined RC Columns
4.1. Stability Coefficient
4.2. Slenderness Limit
5. Analytical Prediction of Bearing Capacity
6. Discussion
7. Conclusions
- The ultimate axial load of CFRP wrapped columns moderately decreases as slenderness increases. For the circular RC columns with a slenderness ratio less than 60, CFRP hoop wraps can still effectively improve the axial load-carrying capacity.
- The ultimate axial load of CFRP-wrapped specimens and unwrapped specimens decreases by approximately 27% and 19% when the slenderness ratio increases from 12 to 56, respectively.
- On the basis of the present study, the limit value of slenderness ratio of 26.5 is proposed for CFRP-confined circular RC columns. Slenderness effects can be neglected if the slenderness ratio of the columns is below this limit.
- According to the equations of GB 50367, CSA S806, ACI 440, and CNR DT200, the axial load predictions of specimens are compared with test results. In the range of the slenderness ratio of the present study, ACI 440 can provide conservative predictions for the ultimate axial load of the test columns.
- A modified equation is proposed to estimate the ultimate load-carrying capacity of CFRP-confined circular RC columns. The calculated values of ultimate load capacity agree with the experimental results by introducing the stability coefficient into the equation. The applicability of the above formula needs to be confirmed further by more research due to the limited experimental data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Youcef, Y.S.; Amziane, S.; Chemrouk, M. Effectiveness of strengthening by CFRP on behavior of reinforced concrete columns with respect to the buckling instability. Mater. Struct. 2015, 48, 35–51. [Google Scholar] [CrossRef]
- Mirmiran, A.; Shahawy, M.; Beitleman, T. Slenderness Limit for Hybrid FRP-Concrete Columns. J. Compos. Constr. 2001, 5, 26–34. [Google Scholar] [CrossRef]
- Fitzwilliam, J.; Bisby, L.A. Slenderness effects on circular CFRP confined reinforced concrete columns. J. Compos. Constr. 2010, 14, 280–288. [Google Scholar] [CrossRef]
- Jiang, T.; Teng, J.G. Slenderness limit for short FRP-confined circular RC columns. J. Compos. Constr. 2012, 16, 650–661. [Google Scholar] [CrossRef]
- Chikh, N.; Benzaid, R.; Mesbah, H. An Experimental Investigation of Circular RC Columns with Various Slenderness Confined with CFRP Sheets. Arab. J. Sci. Eng. 2012, 37, 315–323. [Google Scholar] [CrossRef]
- Jiang, T.; Teng, J.G. Behavior and design of slender FRP-confined circular RC columns. J. Compos. Constr. 2013, 17, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.H.; Mohamed, H.M.; Masmoudi, R. Experimental assessment and theoretical evaluation of axial behavior of short and slender CFFT columns reinforced with steel and CFRP bars. Constr. Build. Mater. 2018, 181, 535–550. [Google Scholar] [CrossRef]
- Xing, L.; Lin, G.; Chen, J.F. Behavior of FRP-Confined Circular RC Columns under Eccentric Compression. J. Compos. Constr. 2020, 24, 04020030. [Google Scholar] [CrossRef]
- Rocca, S.; Galati, N.; Nanni, A. Large-size reinforced concrete columns strengthened with carbon FRP: Validation of existing design guidelines. In Proceedings of the 3rd International Conference on Composites in Civil Engineering, CICE 2006, Miami, FL, USA, 13–15 December 2006; pp. 231–234. [Google Scholar]
- Issa, M.A.; Alrousan, R.Z.; Issa, M.A. Experimental and parametric study of circular short columns confined with CFRP composites. J. Compos. Constr. 2009, 13, 135–147. [Google Scholar] [CrossRef]
- Thériault, M.; Neale, K.W.; Claude, S. Fiber-Reinforced Polymer-Confined Circular Concrete Columns: Investigation of Size and Slenderness Effects. J. Compos. Constr. 2004, 8, 323–331. [Google Scholar] [CrossRef]
- Masia, M.J.; Gale, T.N.; Shrive, N.G. Size effects in axially loaded square section concrete prisms strengthened using carbon fiber reinforced polymer wrapping. Can. J. Civ. Eng. 2004, 31, 1–13. [Google Scholar] [CrossRef]
- Hadi, M.N.S. Behaviour of eccentric loading of FRP confined fibre steel reinforced concrete columns. Constr. Build. Mater. 2009, 23, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hadi, M.N.S. Behaviour of externally confined high-strength concrete columns under eccentric loading. Compos. Struct. 2003, 62, 145–153. [Google Scholar] [CrossRef]
- Bisby, L.; Ranger, M. Axial–flexural Interaction in Circular FRP-Confined Reinforced Concrete Columns. Constr. Build. Mater. 2010, 24, 1672–1681. [Google Scholar] [CrossRef]
- Ghali, K.N.; Rizkalla, S.H.; Kassem, M.A.; Fawzy, T.; Mahmoud, M.H. FRP-confined circular columns under small eccentric loading. In Proceedings of the 5th Alexandria International Conference on Structural and Geotechnical Engineering, Alexandria, Egypt, 20–27 December 2003; pp. 20–22. [Google Scholar]
- Saravanan, J.; Suguna, K.; Raghunath, P.N. Slenderness effect on high strength concrete columns confined with GFRP wraps. Indian J. Eng. Mater. Sci. 2014, 21, 67–74. [Google Scholar]
- Lam, L.; Teng, J.G. Design-oriented stress–strain model for FRP-confined concrete. Constr. Build. Mater. 2003, 17, 471–489. [Google Scholar] [CrossRef]
- GB (Code of China). Code for Design of Concrete Structures; GB 50010; China Planning Press: Beijing, China, 2010. [Google Scholar]
- ACI (American Concrete Institute). Building Code Requirements for Structural Concrete; ACI 318-19; ACI: Farmington Hills, MI, USA, 2019. [Google Scholar]
- CSA (Canadian Standards Association). Design of Concrete Structures; CSA A23.3-14; CSA: Rexdale, ON, Canada, 2014. [Google Scholar]
- MacGregor, J.G.; Breen, J.E. Design of slender concrete columns. ACI J. 1970, 67, 6–28. [Google Scholar]
- ISIS (Intelligent Sensing for Innovative Structures) Canada. Design Manual Number 4: Strengthening Reinforced Concrete Structures with Externally-Bonded Fiber Reinforced Polymers; ISIS: Winnipeg, MB, Canada, 2001. [Google Scholar]
- Mohamed, H.M.; Abdel-Baky, H.M.; Masmoudi, R. Nonlinear Stability Analysis of Concrete-Filled Fiber-Reinforced Polymer-Tube Columns: Experimental and Theoretical Investigation. ACI Struct. J. 2010, 107, 699–708. [Google Scholar]
- GB (Code of China). Code for Design of Strengthening Concrete Structure; GB 50367; China Planning Press: Beijing, China, 2013. [Google Scholar]
- CSA (Canadian Standards Association). Design and Construction of Building Components with Fibre Reinforced Polymers; CSA S806-12; CSA: Mississauga, ON, Canada, 2012. [Google Scholar]
- ACI (American Concrete Institute). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; ACI 440.2R-17; ACI: Farmington Hills, MI, USA, 2017. [Google Scholar]
- CNR (National Research Council). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures; CNR DT200-2013; CNR: Rome, Italy, 2013. [Google Scholar]
- Kaeseberg, S.; Messerer, D.; Holschemacher, K. Experimental Study on Concrete under Combined FRP–Steel Confinement. Materials 2020, 13, 4467. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, W.; Tam, V.W.Y.; Yan, L. Mechanical performance of CFRP-confined sustainable geopolymeric recycled concrete under axial compression. Eng. Struct. 2020, 224, 111246. [Google Scholar] [CrossRef]
Specimens | Slenderness Ratio | fcu (MPa) | L (mm) | D (mm) | CFRP layers | Reinforcement |
---|---|---|---|---|---|---|
C-0-12-1 | 12 | 32 | 600 | 200 | 0 | 6ϕ8 |
C-1-12-2 | 12 | 32 | 600 | 200 | 1 | 6ϕ8 |
C-0-20-3 | 20 | 32 | 1000 | 200 | 0 | 6ϕ8 |
C-1-20-4 | 20 | 32 | 1000 | 200 | 1 | 6ϕ8 |
C-0-32-5 | 32 | 32 | 1600 | 200 | 0 | 6ϕ8 |
C-1-32-6 | 32 | 32 | 1600 | 200 | 1 | 6ϕ8 |
C-0-40-7 | 40 | 32 | 2000 | 200 | 0 | 6ϕ8 |
C-1-40-8 | 40 | 32 | 2000 | 200 | 1 | 6ϕ8 |
C-0-48-9 | 48 | 32 | 2400 | 200 | 0 | 6ϕ8 |
C-1-48-10 | 48 | 32 | 2400 | 200 | 1 | 6ϕ8 |
C-0-56-11 | 56 | 32 | 2800 | 200 | 0 | 6ϕ8 |
C-1-56-12 | 56 | 32 | 2800 | 200 | 1 | 6ϕ8 |
Material | Thickness, tf (mm) | Density (g/m2) | Tensile Strength, ffu (MPa) | Elastic Modulus, Ef (MPa) | Fracture Strain, εfu (%) |
---|---|---|---|---|---|
CFRP | 0.167 | 300 | 4330 | 237,000 | 1.7 |
epoxy adhesive | 41.1 | 3068 | 1.57 |
Specimens | Slenderness Ratio | Ultimate Load (kN) | Specimen | Slenderness Ratio | Ultimate Load (kN) |
---|---|---|---|---|---|
C-0-12-1 | 12 | 675 | C-1-12-2 | 12 | 1214 |
C-0-20-3 | 20 | 665 | C-1-20-4 | 20 | 1218 |
C-0-32-5 | 32 | 699 | C-1-32-6 | 32 | 1145 |
C-0-40-7 | 40 | 660 | C-1-40-8 | 40 | 1100 |
C-0-48-9 | 48 | 630 | C-1-48-10 | 48 | 1010 |
C-0-56-11 | 56 | 550 | C-1-56-12 | 56 | 890 |
No. | Specimens | H (mm) | D (mm) | L/D | λ | fco′ (MPa) | ffu (MPa) | Ef (GPa) | εfu | tf (mm) | fy (MPa) | As′ (mm2) | Nu (kN) | φ | Type | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | C-1-12-2 | 600 | 200 | 3 | 12 | 21.4 | 4330 | 237 | 0.017 | 0.167 | 240 | 302 (6ϕ8) | 1214 | 1.0 | CFRP cloth | Present study |
C-1-20-4 | 1000 | 5 | 20 | 1218 | 1.0 | |||||||||||
C-1-32-6 | 1600 | 8 | 32 | 1145 | 0.94 | |||||||||||
C-1-40-8 | 2000 | 10 | 40 | 1100 | 0.91 | |||||||||||
C-1-48-10 | 2400 | 12 | 48 | 1010 | 0.83 | |||||||||||
C-1-56-12 | 2800 | 14 | 56 | 890 | 0.73 | |||||||||||
2 | G1-1C | 610 | 150 | 4 | 16 | 20 | 3500 | 233.333 | 0.015 | 0.16 | 365 | 392.31 | 772 | 0.98 | CFRP cloth | Ghali [16] |
G2-1C | 915 | 6 | 24 | 720 | 0.92 | |||||||||||
G3-1C | 1220 | 8 | 32 | 658 | 0.84 | |||||||||||
3 | 8-S-I | 610 | 152 | 4 | 8 | 30 | 345 | 20.690 | 0.012 | 2.65 | 460 | 471 (6ϕ10) | 1652 | - | GFRP tube | Abdallah [7] |
12-S-I | 912 | 6 | 12 | 1454 | 1.00 | |||||||||||
16-S-I | 1216 | 8 | 16 | 1202 | 0.83 | |||||||||||
20-S-I | 1500 | 10 | 20 | 1127 | 0.78 | |||||||||||
4 | S8G-3 | 300 | 150 | 2 | 8 | 42.6 | 446.9 | 13.965 | 0.0302 | 3 | 450 | 302 (6ϕ8) | 1370 | - | GFRP cloth | Saravanan [17] |
S16G-3 | 600 | 4 | 16 | 1300 | 0.97 | |||||||||||
S24G-3 | 900 | 6 | 24 | 1275 | 0.96 | |||||||||||
S32G-3 | 1200 | 8 | 32 | 1190 | 0.89 | |||||||||||
5 | RC-1 | 305 | 147.3 | 2.1 | 4 | 22.4 | 2186 | 69.640 | 0.031 | 3.68 | - | - | 1659.1 | - | GFRP tube | Mirmiran [2] |
RC-2 | 813 | 5.5 | 11 | 1362.2 | - | |||||||||||
RC-3 | 1372 | 9.3 | 18 | 1026.5 | 0.78 | |||||||||||
RC-4 | 1651 | 11.2 | 22 | 837.7 | 0.64 | |||||||||||
RC-5 | 2286 | 15.5 | 31 | 648.6 | 0.49 | |||||||||||
RC-6 | 2591 | 17.6 | 35.2 | 592 | 0.45 | |||||||||||
RC-7 | 2743 | 18.6 | 37.2 | 475.2 | 0.36 |
Codes | Bearing Capacity Formulas | Comments |
---|---|---|
GB 50367-2013 | ||
CSA S806-12 | ; | |
ACI 440.2R-17 | ; | |
CNR DT200-2013 | ; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Li, Q.; Yan, H.; Wen, Y. Experimental Study on Slender CFRP-Confined Circular RC Columns under Axial Compression. Appl. Sci. 2021, 11, 3968. https://doi.org/10.3390/app11093968
Hu Z, Li Q, Yan H, Wen Y. Experimental Study on Slender CFRP-Confined Circular RC Columns under Axial Compression. Applied Sciences. 2021; 11(9):3968. https://doi.org/10.3390/app11093968
Chicago/Turabian StyleHu, Zhongjun, Quanheng Li, Hongfeng Yan, and Yuchuan Wen. 2021. "Experimental Study on Slender CFRP-Confined Circular RC Columns under Axial Compression" Applied Sciences 11, no. 9: 3968. https://doi.org/10.3390/app11093968
APA StyleHu, Z., Li, Q., Yan, H., & Wen, Y. (2021). Experimental Study on Slender CFRP-Confined Circular RC Columns under Axial Compression. Applied Sciences, 11(9), 3968. https://doi.org/10.3390/app11093968