Development of Kraft Lignin Chemically Modified as a Novel Crosslinking Agent for the Synthesis of Active Hydrogels
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Characterization Techniques
2.2.1. Differential Scanning Calorimetry (DSC)
2.2.2. Fourier Transformed Infrared Spectroscopy (FTIR)
2.2.3. 1H-NMR
2.2.4. Conductivity
2.2.5. FE-SEM
2.2.6. Atomic Absorption
2.3. Methods
2.3.1. Alkali Kraft Lignin Chemical Modification
2.3.2. Hydrogel’s Synthesis and Swelling Probes
2.3.3. Water Absorption of the Hydrogels
2.3.4. Metal Ion Adsorption
3. Results
3.1. Kraft Lignin Functionalization
3.1.1. Conductivity Test of AKL
3.1.2. FTIR of AKL
3.1.3. 1H-NMR of AKL
3.1.4. DSC of AKL
3.2. Hydrogels Synthesis
3.2.1. FE-SEM of Hydrogels
3.2.2. FTIR of Hydrogels
3.2.3. Water Absorption of the Hydrogels
3.2.4. Metal Ions Adsorption Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeon, C.; Höll, W.H. Application of the surface complexation model to heavy metal sorption equilibria onto aminated chitosan. Hydrometallurgy 2004, 71, 421–428. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.K.; Zhu, Y.; Hauze, D. Metal(II) ion binding onto chelating exchangers with nitrogen donor atoms: Some new observations and related implications. Environ. Sci. Technol. 1991, 25, 481–488. [Google Scholar] [CrossRef]
- Chao, A. Enzymatic grafting of carboxyl groups on to chitosan––to confer on chitosan the property of a cationic dye adsorbent. Bioresour. Technol. 2004, 91, 157–162. [Google Scholar] [CrossRef]
- Kaşgöz, H.; Kaşgöz, A.; Şahin, Ü.; Temelli, T.Y.; Bayat, C. Hydrogels with Acid Groups for Removal of Copper(II) and Lead(II) Ions. Polym. Technol. Eng. 2006, 45, 117–124. [Google Scholar] [CrossRef]
- Li, N.; Bai, R. A Novel Amine-Shielded Surface Cross-Linking of Chitosan Hydrogel Beads for Enhanced Metal Adsorption Performance. Ind. Eng. Chem. Res. 2005, 44, 6692–6700. [Google Scholar] [CrossRef]
- Chauhan, G.S.; Chauhan, K.; Chauhan, S.; Kumar, S.; Kumari, A. Functionalization of pine needles by carboxymethylation and network formation for use as supports in the adsorption of Cr6+. Carbohydr. Polym. 2007, 70, 415–421. [Google Scholar] [CrossRef]
- Çavuş, S.; Gürdaǧ, G. Noncompetitive Removal of Heavy Metal Ions from Aqueous Solutions by Poly[2 -(acrylamido)-2-methyl-1-propanesulfonic acid-co-itaconic acid] Hydrogel. Ind. Eng. Chem. Res. 2009, 48, 2652–2658. [Google Scholar] [CrossRef]
- Katime, I.; Rodriguez, E. Absorption of metal ions and swelling properties of poly(acrylic acid-co-itaconic acid) hydrogels. J. Macromol. Sci. Part A 2001, 38, 543–558. [Google Scholar] [CrossRef]
- Kofinas, P.; Kioussis, D.R. Reactive Phosphorus Removal from Aquaculture and Poultry Productions Systems Using Polymeric Hydrogels. Environ. Sci. Technol. 2002, 37, 423–427. [Google Scholar] [CrossRef]
- Gandini, A.; Belgacem, M.N. Lignins as Components of Macromolecular Materials. Monomers Polym. Compos. Renew. Resour. 2008, 243–247. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A.; Meena, R.S.; Formanek, P. Enzymatic Degradation of Lignin in Soil: A Review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Leonowicz, A.; Matuszewska, A.; Luterek, J.; Ziegenhagen, D.; Wojtas-Wasilewska, M.; Cho, N.S.; Hofrichter, M.; Rogalski, J. Review Biodegradation of Lignin by White Rot Fungi. Fungal Genet. Biol. 1999, 27, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [Google Scholar] [CrossRef]
- Muzzarelli, R.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym. 2009, 77, 1–9. [Google Scholar] [CrossRef]
- Demitri, C.; Del Sole, R.; Scalera, F.; Sannino, A.; Vasapollo, G.; Maffezzoli, A.; Ambrosio, L.; Nicolais, L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci. 2008, 110, 2453–2460. [Google Scholar] [CrossRef]
- Chen, X.; Li, P.; Kang, Y.; Zeng, X.; Xie, Y.; Zhang, Y.; Wang, Y.; Xie, T. Preparation of temperature-sensitive Xanthan/NIPA hydrogel using citric acid as crosslinking agent for bisphenol A adsorption. Carbohydr. Polym. 2019, 206, 94–101. [Google Scholar] [CrossRef]
- Korey, M.; Mendis, G.P.; Youngblood, J.P.; Howarter, J.A. Tannic acid: A sustainable crosslinking agent for high glass transition epoxy materials. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1468–1480. [Google Scholar] [CrossRef]
- Liang, H.-C.; Chang, W.-H.; Liang, H.-F.; Lee, M.-H.; Sung, H.-W. Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J. Appl. Polym. Sci. 2004, 91, 4017–4026. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Meng, Y.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H. Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 2019, 135, 1006–1019. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Gupta, K. A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polym. Technol. Eng. 2015, 55, 54–70. [Google Scholar] [CrossRef]
- Zheng, S.; Li, Z.; Liu, Z. The fast homogeneous diffusion of hydrogel under different stimuli. Int. J. Mech. Sci. 2018, 137, 263–270. [Google Scholar] [CrossRef]
- Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K.-F.; Adler, H.-J.P. Review on Hydrogel-based pH Sensors and Microsensors. Sensors 2008, 8, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162. [Google Scholar] [CrossRef]
- Rico-garc, D.; Ruiz-rubio, L.; Leyre, P. Lignin-Based Hydrogels: Synthesis and Applications. Polymers 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Hamley, I.W.; Huglin, M.B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerisation. Polymer 2002, 43, 5181–5186. [Google Scholar] [CrossRef]
- Sun, X.-F.; Zeng, Q.; Wang, H.; Hao, Y. Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly(N-isopropyl acrylamide). Cellulose 2018, 26, 1909–1922. [Google Scholar] [CrossRef]
- Sabino, M.A. Effect of the presence of lignin or peat in IPN hydrogels on the sorption of heavy metals. Polym. Bull. 2010, 65, 495–508. [Google Scholar] [CrossRef]
- Feng, Q.; Chen, F.; Zhou, X. Preparation of Thermo-Sensitive Hydrogels from Acrylated Lignin and N-Isopropylacrylamide Through Photocrosslinking. J. Biobased Mater. Bioenergy 2012, 6, 336–342. [Google Scholar] [CrossRef]
- Brannigan, R.P.; Khutoryanskiy, V.V. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery. Colloids Surfaces B Biointerfaces 2017, 155, 538–543. [Google Scholar] [CrossRef]
- Yang, P.; Li, D.; Jin, S.; Ding, J.; Guo, J.; Shi, W.; Wang, C. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 2014, 35, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Li, Y.; Jia, D.; Deng, J.; Yang, W. β-Cyclodextrin-based oil-absorbents: Preparation, high oil absorbency and reusability. Carbohydr. Polym. 2011, 83, 1990–1996. [Google Scholar] [CrossRef]
- An, Y.-X.; Li, N.; Wu, H.; Lou, W.-Y.; Zong, M.-H. Changes in the Structure and the Thermal Properties of Kraft Lignin during Its Dissolution in Cholinium Ionic Liquids. ACS Sustain. Chem. Eng. 2015, 3, 2951–2958. [Google Scholar] [CrossRef]
- Glasser, W.G. Classification of Lignin According to Chemical and Molecular Structure. Monomers Polym. Compos. Renew. Resour. 2000, 742, 216–238. [Google Scholar]
- Lora, J.H.; Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, Z.; Chen, J.; Yang, G.; Lucia, L.A. Synthesis and Characterization of Alkali Lignin-based Hydrogels from Ionic Liquids. BioResources 2017, 12, 5395–5406. [Google Scholar] [CrossRef] [Green Version]
- Callemant, C.J. The metabolism and pharmacokinetics of acrylamide: Implications for mechanisms of toxicity and human risk estimation. Drug Metab. Rev. 1996, 28, 527–590. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Peresin, M.S.; Tamminen, T.; Rodríguez, A.; Larrañeta, E.; Jääskeläinen, A.-S. Lignin-based hydrogels with “super-swelling” capacities for dye removal. Int. J. Biol. Macromol. 2018, 115, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Betancourt, T.; Pardo, J.; Soo, K.; Peppas, N.A. Characterization of pH-Responsive Hydrogels of Poly(Itaconic acid-g-Ethylene Glycol) Prepared by UV-Initiated Free Radical Polymerization as Biomaterials for Oral Delivery of Bioactive Agents. J. Biomed. Mater. Res. 2011, 93, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Lange, H.; Decina, S.; Crestini, C. Oxidative upgrade of lignin—Recent routes reviewed. Eur. Polym. J. 2013, 49, 1151–1173. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Çelebi, H.; Gök, G.; Gök, O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Sci. Rep. 2020, 10, 17570. [Google Scholar] [CrossRef] [PubMed]
Sample ID | AA/Modified AKL/Crosslinker | Sample ID | AA/Modified AKL/Crosslinker |
---|---|---|---|
AALm4 | 96/4/0% | AALm7nM0.1 | 92.9/7/0.1% |
AALm5 | 95/5/0% | AALm7nM0.2 | 92.8/7/0.2% |
AALm6 | 94/6/0% | AALm7nM0.3 | 92.7/7/0.3% |
AALm7 | 93/7/0% | AALm7nM0.4 | 92.6/7/0.4% |
AALm8 | 92/8/0% | AALm7nM0.5 | 92.5/7/0.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rico-García, D.; Guerrero-Ramírez, L.G.; Cajero-Zul, L.R.; Orozco-Guareño, E.; Figueroa-Ochoa, E.B.; Gutiérrez-Saucedo, R.A.; Perez-Alvarez, L.; Vilas-Vilela, J.L.; Hernandez-Olmos, S.L. Development of Kraft Lignin Chemically Modified as a Novel Crosslinking Agent for the Synthesis of Active Hydrogels. Appl. Sci. 2021, 11, 4012. https://doi.org/10.3390/app11094012
Rico-García D, Guerrero-Ramírez LG, Cajero-Zul LR, Orozco-Guareño E, Figueroa-Ochoa EB, Gutiérrez-Saucedo RA, Perez-Alvarez L, Vilas-Vilela JL, Hernandez-Olmos SL. Development of Kraft Lignin Chemically Modified as a Novel Crosslinking Agent for the Synthesis of Active Hydrogels. Applied Sciences. 2021; 11(9):4012. https://doi.org/10.3390/app11094012
Chicago/Turabian StyleRico-García, Diana, Luis Guillermo Guerrero-Ramírez, Leonardo Ramses Cajero-Zul, Euologio Orozco-Guareño, Edgar Benjamin Figueroa-Ochoa, Ramon Alejandro Gutiérrez-Saucedo, Leyre Perez-Alvarez, Jose Luis Vilas-Vilela, and Saira Lizette Hernandez-Olmos. 2021. "Development of Kraft Lignin Chemically Modified as a Novel Crosslinking Agent for the Synthesis of Active Hydrogels" Applied Sciences 11, no. 9: 4012. https://doi.org/10.3390/app11094012
APA StyleRico-García, D., Guerrero-Ramírez, L. G., Cajero-Zul, L. R., Orozco-Guareño, E., Figueroa-Ochoa, E. B., Gutiérrez-Saucedo, R. A., Perez-Alvarez, L., Vilas-Vilela, J. L., & Hernandez-Olmos, S. L. (2021). Development of Kraft Lignin Chemically Modified as a Novel Crosslinking Agent for the Synthesis of Active Hydrogels. Applied Sciences, 11(9), 4012. https://doi.org/10.3390/app11094012