Experimental Study of Low Temperature Performance of Porous Asphalt Mixture
Abstract
:1. Introduction
2. Low Temperature Performance Test
2.1. Raw Materials
2.2. Design of Mix Proportion
2.3. Orthogonal Experimental Design
- (1)
- Orthogonal table design
- I)
- Short-term aging
- II)
- Long-term aging
- (2)
- Evaluation indicator
- I)
- Flexural tensile strength
- II)
- Maximum bending strain
- III)
- Bending stiffness modulus
3. Experimental Method and Results
3.1. Range of Evaluation Indicator Values
3.2. Influence Analysis of Factors
- (1)
- Porosity
- (2)
- Modifier content
- (3)
- Aging
- (4)
- Test temperature
3.3. Influence of Porosity on Maximum Bending Strain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Speight, J.G. Asphalt Materials Science and Technology; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Poulikakos, L.D.; Partl, M.N. Evaluation of moisture susceptibility of porous asphalt concrete using water submersion fatigue tests. Constr. Build. Mater. 2009, 23, 3475–3484. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Gonzalo-Orden, H.; Findley, D.J.; Rojí, E. A skid resistance prediction model for an entire road network. Constr. Build. Mater. 2020, 262, 120041. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Gilani, M.S.; Derome, D.; Jerjen, I.; Vontobel, P. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Appl. Radiat. Isotopes 2013, 77, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.; Zhang, H.; Liu, Z. The effect of two-phase mixing on the functional and mechanical properties of TPS/SBS-modified porous asphalt concrete. Constr. Build. Mater. 2021, 270, 121841. [Google Scholar] [CrossRef]
- Afonso, M.L.; Dinis-Almeida, M.; Fael, C.S. Study of the porous asphalt performance with cellulosic fibres. Constr. Build. Mater. 2017, 135, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Verwaal, W.; van de Ven, M.F.C.; Molenaar, A.A.A.; Wu, S.P. Using high-resolution industrial CT scan to detect the distribution of rejuvenation products in porous asphalt concrete. Constr. Build. Mater. 2015, 100, 1–10. [Google Scholar] [CrossRef]
- Isenring, T.; Koster, H.; Scazziga, I. Experiences with porous asphalt in Switzerland. Transport. Res. Rec. 1990, 1265, 41–53. [Google Scholar]
- Ruiz, A.; Alberola, R.; Pérez, F.; Sánchez, B. Porous asphalt mixtures in Spain. Transport. Res. Rec. 1990, 1265, 87–94. [Google Scholar]
- Nicholls, J.C. Review of UK Porous Asphalt Trials; TRL Report 264; Transport Research Laboratory: London, UK, 1997. [Google Scholar]
- Fletcher, E.; Theron, A.J. Performance of Open Graded Porous Asphalt in New Zealand; NZ Transport Agency Research Report 455; New Zealand Transport Agency: Wellington, New Zealand, 2011. [Google Scholar]
- Chen, J.S.; Yang, C.H. Porous asphalt concrete: A review of design, construction, performance and maintenance. Int. J. Pavement Res. Technol. 2020, 13, 601–612. [Google Scholar] [CrossRef]
- Ni, F.J.; Xu, H.; Leng, Z.; Liu, Q. Influence of asphalt properties on porous asphalt mixture performance. J. Traffic Transp. Eng. 2003, 3, 1–4. [Google Scholar]
- Tan, Y.Q.; Song, X.; Ji, L.; Chen, G.; Wu, X. Influence of coarse aggregate performance on high temperature performance of asphalt mixture. China J. Highw. Transp. 2009, 22, 29–33. [Google Scholar]
- Nicholls, J.C.; Carswell, I.G. The Design of Porous Asphalt Mixtures to Performance-Related Criteria; TRL Report 497; Transportation Research Laboratory: Wokingham, Berkshire, UK, 2001. [Google Scholar]
- Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook, 6th ed.; ICE Publishing: Westminster, London, UK, 2015. [Google Scholar]
- Kett, I. Asphalt Materials and Mix Design Manual; Noyes Publications: Westwood, NJ, USA, 1998. [Google Scholar]
- Jiang, W. Study on Mix Proportion Design Method and Road Performance of Porous Asphalt Pavement Mixture. Master’s Thesis, Chang’an University, Xi’an, China, 2008. [Google Scholar]
- Xing, M.L. Study on Composition Design and Performance of Porous Asphalt Mixture. Master’s Thesis, Chang’an University, Xi’an, China, 2007. [Google Scholar]
- Zhang, M.M. Study on Mix Proportion Design and Technical Performance of Porous Asphalt Mixture. Master’s Thesis, Chang’an University, Xi’an, China, 2009. [Google Scholar]
- Luo, S.; Lu, Q.; Qian, Z. Performance evaluation of epoxy modified open-graded porous asphalt concrete. Constr. Build. Mater. 2015, 76, 97–102. [Google Scholar] [CrossRef]
- Qian, Z.; Lu, Q. Design and laboratory evaluation of small particle porous epoxy asphalt surface mixture for roadway pavements. Constr. Build. Mater. 2015, 77, 110–116. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, X.N. Design of porous asphalt mixture based on CAVF method. J. Highway Transp. Res. Dev. 2016, 33, 7–12. [Google Scholar]
- Gražulytė, J.; Vaitkus, A.; Andrejevas, V.; Gribulis, G. Methods and criteria for evaluation of asphalt mixture resistance to low temperature cracking. Balt. J. Road Bridge Eng. 2017, 12, 135–144. [Google Scholar] [CrossRef]
- Kliewer, J.E.; Zeng, H.; Vinson, T.S. Aging and low-temperature cracking of asphalt concrete mixture. J. Cold Reg. Eng. 1996, 10, 134–148. [Google Scholar] [CrossRef]
- Sebaaly, P.E.; Lake, A.; Epps, J. Evaluation of low-temperature properties of HMA mixtures. J. Transp. Eng. 2002, 128, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Yalghouzaghaj, M.N.; Sarkar, A.; Hamedi, G.H.; Hayati, P. Application of the surface free energy method on the mechanism of low-temperature cracking of asphalt mixtures. Constr. Build. Mater. 2021, 268, 121194. [Google Scholar] [CrossRef]
- Zhang, Y. Study on Low Temperature Anti-Cracking Performance and Mix Proportion Design Method of Asphalt Mixture in Permafrost Regions. Master’s Thesis, Chang’an University, Xi’an, China, 2004. [Google Scholar]
- Bäckström, M. Ground temperature in porous pavement during freezing and thawing. J. Transp. Eng. 2000, 126, 375–381. [Google Scholar] [CrossRef]
- Lamothe, S.; Perraton, D.; Di Benedetto, H. Contraction and expansion of partially saturated hot mix asphalt samples exposed to freeze-thaw cycles. Road Mater. Pavement Des. 2015, 16, 277–299. [Google Scholar] [CrossRef]
- Vu, V.T.; Chupin, O.; Piau, J.M.; Hammoum, F.; Bouron, S. Experimental study and modeling of the behavior of partially saturated asphalt concrete under freezing condition. Constr. Build. Mater. 2018, 163, 169–178. [Google Scholar] [CrossRef]
- Lebens, M. Porous Asphalt Pavement Performance in Cold Regions; Office of Materials and Road Research, Minnesota Department of Transportation: St Paul, MN, USA, 2012. [Google Scholar]
- Liu, Q.; Schlangen, E.; van de Ven, M.; van Bochove, G.; van Montfort, J. Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test. Constr. Build. Mater. 2012, 29, 403–409. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; van de Ven, M.; van Bochove, G. Optimization of composition and mixing process of a self-healing porous asphalt. Constr. Build. Mater. 2012, 30, 59–65. [Google Scholar] [CrossRef]
- Mo, L.T.; Huurman, M.; Woldekidan, M.F.; Wu, S.P.; Molenaar, A.A.A. Investigation into material optimization and development for improved ravelling resistant porous asphalt concrete. Mater. Design 2010, 31, 3194–3206. [Google Scholar] [CrossRef]
- Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M.Á.; Indacoechea-Vega, I. Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. J. Clean. Prod. 2018, 170, 1279–1287. [Google Scholar] [CrossRef]
- Hu, X.; Dai, K.; Pan, P. Investigation of engineering properties and filtration characteristics of porous asphalt concrete containing activated carbon. J. Clean. Prod. 2019, 209, 1484–1493. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Dong, Q.; Wu, J.; Jiang, J. Evaluation of permanent deformation of multilayer porous asphalt courses using an advanced multiply-repeated load test. Constr. Build. Mater. 2018, 160, 19–29. [Google Scholar] [CrossRef]
- Mo, L.T.; Huurman, M.; Wu, S.P.; Molenaar, A.A.A. 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elem. Anal. Des. 2008, 44, 186–196. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.C.; Zheng, C.F.; Guo, X.D.; Chen, W.X. Evaluation of siltation degree of permeable asphalt pavement and detection of noise reduction degree. Appl. Sci. 2021, 11, 349. [Google Scholar] [CrossRef]
- Zhang, K.; Kevern, J. Review of porous asphalt pavements in cold regions: The state of practice and case study repository in design, construction, and maintenance. J. Infra. Preserv Resil. 2021, 2, 4. [Google Scholar] [CrossRef]
- Fortier, R.; Vinson, T. Low-temperature cracking and aging performance of modified asphalt concrete specimens. Transport. Res. Rec. J. Transport. Res. Board 1998, 1630, 77–86. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Chai, C.; Liang, C.Y.; Chen, Y. Mechanical performance of warm-mixed porous asphalt mixture with steel slag and crumb-rubber–SBS modified bitumen for seasonal frozen regions. Materials 2019, 12, 857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.B.; Zhu, B.; Wei, H.B.; Chai, C.; Chen, Y. Laboratory evaluation on the performance of porous asphalt mixture with steel slag for seasonal frozen regions. Sustainability 2019, 11, 6924. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Ni, F.J.; Chen, R.S.; Wang, Y. Evaluation of low-temperature performance of porous asphalt mixture. J. Highway Transp. Res. Dev. (English Ed.) 2010, 4, 33–37. [Google Scholar] [CrossRef]
- Vavrik, W.R.; Pine, W.J.; Huber, G.; Carpenter, S.H.; Bailey, R. The Bailey method of gradation evaluation: The influence of aggregate gradation and packing characteristics on voids in the mineral aggregate. J. Assoc. Asphalt Paving Technol. 2001, 70, 132–175. [Google Scholar]
- Vavrik, W.R.; Pine, W.J.; Carpenter, S.H. Aggregate blending for asphalt mix design: Bailey method. Transp. Res. Rec. J. Transp. Res. Board 2002, 1789, 146–153. [Google Scholar] [CrossRef]
- Gong, Y.H. Study on the Composition Design and Structural Performance of Porous Asphalt Concrete Bridge Deck Pavement. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2018. [Google Scholar]
- JTG E20-2011. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering; China Communications Press: Beijing, China, 2011. [Google Scholar]
- JTG F40-2004. Technical Specification for Construction of Highway Asphalt Pavements; China Communications Press: Beijing, China, 2004. [Google Scholar]
- Haryanto, I.; Takahashi, O. Effect of aggregate gradation on workability of hot mix asphalt mixtures. Balt. J. Road Bridge Eng. 2007, 2, 21–28. [Google Scholar]
- Vavrik, W.R. Bailey Method for Gradation Selection in HMA Mixture Design; Transportation Research Board Circular E-C044; Transportation Research Board: Washington, DC, USA, 2002. [Google Scholar]
- Hardiman, H.; Hamzah, M.O.; Mohammed, A.A. Binder drainage test for porous mixtures made by varying the maximum aggregate sizes. Civ. Eng. Dimen. 2004, 6, 26–31. [Google Scholar]
- Cox, B.C.; Smith, B.T.; Howard, I.L.; James, R.S. State of knowledge for Cantabro testing of dense graded asphalt. J. Mater. Civ. Eng. 2017, 29, 04017174. [Google Scholar] [CrossRef]
- Taguchi, G.; Chowdhury, S.; Wu, Y. Taguchi’s Quality Engineering Handbook; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Taguchi, G. Quality engineering (Taguchi methods) for the development of electronic circuit technology. IEEE Trans. Reliab. 1995, 44, 225–229. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, F.; Amirkhanian, S.; Huang, W.; Zheng, M. A review on low temperature performances of rubberized asphalt materials. Constr. Build. Mater. 2017, 145, 483–505. [Google Scholar] [CrossRef]
- Nejad, F.M.; Aghajani, P.; Modarres, A.; Firoozifar, H. Investigating the properties of crumb rubber modified bitumen using classic and SHRP testing methods. Constr. Build. Mater. 2012, 26, 481–489. [Google Scholar] [CrossRef]
- Arshad, M.; Ahmed, M.F. Potential use of reclaimed asphalt pavement and recycled concrete aggregate in base/subbase layers of flexible pavements. Constr. Build. Mater. 2017, 151, 83–97. [Google Scholar] [CrossRef]
- Pi, Y.H.; Li, Z.; Pi, Y.X.; Huang, Z.; Li, G.C. Performance evaluation of recycled asphalt pavement materials and cold recycling mixtures designed with vibratory compaction method. Appl. Sci. 2019, 9, 3167. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.H.; Cannone Falchetto, A. Double-recycled reclaimed asphalt pavement: A laboratory investigation at low temperatures based on different mathematical approaches. Materials 2020, 13, 3032. [Google Scholar] [CrossRef]
- Yang, Z.; Zhuang, G.Y.; Wei, X.S.; Wei, J.T.; Yu, H.Y.; Xu, W. Quantitative analysis of the blending degree of virgin and RAP binders in recycled asphalt mixtures with a high RAP content. Appl. Sci. 2018, 8, 2668. [Google Scholar] [CrossRef] [Green Version]
Designation | Nominal Size Range (mm) | Percentage Passing through the Following Sieve Apertures (%) | ||||
19.0 mm | 13.2 mm | 9.5 mm | 4.75 mm | 2.36 mm | ||
S10 | 10~15 | 100 | 90~100 | 0~15 | 0~5 | — |
S12 | 5~10 | — | 100 | 90~100 | 0~15 | 0~5 |
Test Item | Unit | Test Result | |
5~10 mm | 10~15 mm | ||
Crushed value | % | 6.8 | |
Los Angeles abrasion loss | % | 9.7 | |
Apparent relative density | — | 2.930 | 2.962 |
Water absorption | % | 0.74 | 1.11 |
Soundness (mass loss with sodium sulfate) | % | 5.2 | |
Needle flake granule content | % | 10.2 | 8.5 |
Silt content (<0.075 mm particle content by water washing method) | % | 0.5 | 0.9 |
Soft mineral content | % | 1.3 | 0.7 |
Polished stone value | — | 45 | |
Adhesion to asphalt | — | 5 |
Designation | Nominal Size Range (mm) | Percentage Passing through the Following Sieve Apertures (%) | ||||||
4.75 mm | 2.36 mm | 1.18 mm | 0.6 mm | 0.3 mm | 0.15 mm | 0.075 mm | ||
S16 | 0~3 | 100 | 80~100 | 50~80 | 25~60 | 8~45 | 0~25 | 0~15 |
Test Item | Unit | Test Result | Indicator Requirement |
---|---|---|---|
Apparent density | g/cm3 | 2.929 | ≥2.60 |
Silt content (<0.075 mm particle content by water washing method) | % | 1.2 | ≤3 |
Materials | Percentage Passing through the Following Sieve Apertures (%) | ||||||||||
16 mm | 13.2 mm | 9.5 mm | 4.75 mm | 2.36 mm | 1.18 mm | 0.6 mm | 0.3 mm | 0.15 mm | 0.075 mm | ||
Coarse aggregate | S10 | 100 | 91.3 | 35.9 | 0.8 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
S12 | 100 | 100 | 99.1 | 3.3 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | |
Fine aggregate | S16 | 100 | 100 | 100 | 97.0 | 68.3 | 47.4 | 33.5 | 22.9 | 17.4 | 11.9 |
Limestone powder | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99.2 | 95.7 | 77.6 |
Test Item | Unit | Test Result | Indicator Requirement | |
---|---|---|---|---|
Apparent density | g/cm3 | 2.699 | ≥2.50 | |
Water content | % | 0.43 | ≤1 | |
Particle size range (by washing method) | <0.6 mm | % | 100 | 100 |
<0.15 mm | % | 95.7 | 90~100 | |
<0.075 mm | % | 77.6 | 75~100 | |
Appearance | — | No agglomeration | No agglomeration | |
Hydrophilic coefficient | — | 0.46 | <1 | |
Plasticity index | % | 2.9 | <4 |
Test Item | Unit | Test Result | Indicator Requirement | |
---|---|---|---|---|
Needle penetration (25 °C, 5 s, 100 g) | 0.1 mm | 70.5 | 60~80 | |
Softening point (ring and ball method) | °C | 48.5 | ≥46 | |
Ductility (10 °C) | cm | 24.1 | ≥20 | |
Density | g/cm3 | 1.031 | Measured value | |
Relative density | — | 1.035 | Measured value | |
Rolling thin film oven heated (RTFOT) | Quality change | % | −0.6 | ±0.8 |
Residual needle penetration ratio | % | 69.1 | ≥61 | |
Residual ductility (10 °C) | cm | 7.8 | ≥6 |
Test Item | Unit | Matrix asphalt/SINOTPS = 88/12 | |
---|---|---|---|
Needle penetration (25 °C, 100 g, 5 s) | 0.1 mm | 49.5 | |
Softening point (ring and ball method) | °C | 93.9 | |
Ductility (5 °C) | cm | 45.3 | |
Elastic restitution | % | 96.8 | |
Dynamic viscosity (60 °C) | Pa·s | 69,618 | |
Viscosity (135 °C) | Pa·s | 2.883 | |
Viscous toughness | N·m | 23.47 | |
Toughness | N·m | 15.57 | |
Rolling thin film oven heated (RTFOT) | Quality change | % | 0.07 |
Residual needle penetration ratio | % | 76.2 | |
Residual ductility (5 °C) | cm | 29.1 |
Bitumen/Aggregate Ratio (%) | Percentage of Mineral Aggregate (%) | |||
S10 | S12 | S16 | Limestone powder | |
5.36 | 46.68 | 37.02 | 12.83 | 3.47 |
Test Item | Bitumen/Aggregate Ratio (%) | ||||
3.6 | 4.1 | 4.6 | 5.1 | 5.6 | |
Binder leakage loss rate (%) | 0.03 | 0.05 | 0.11 | 0.20 | 0.65 |
Cohesion loss rate (%) | 6.25 | 4.25 | 4.43 | 4.48 | 3.19 |
Test Item | Unit | Test Result | Indicator Requirement | |
---|---|---|---|---|
Marshall test | Porosity | % | 20.7 | 18~22 |
Marshall stability (double- sided compaction 50 times) | N | 5480 | ≥5000 | |
Flow value | mm | 2.38 | 2~4 | |
Water permeability | Water permeability coefficient | mL/15 s | 1602 | >800 |
High temperature stability | Dynamic stability (60 °C, 0.7 MPa) | times/mm | 5458 | ≥5000 |
Water immersion stability | Residual stability of water immersion | % | 94.0 | ≥85 |
Water immersion loss | % | 2.49 | ≤15 | |
Freeze-thaw splitting strength ratio | % | 91.4 | ≥80 |
Level Number | Factor | |||
A | B | C | D | |
Porosity | Modifier content | Aging | Test temperature | |
1 | 16.2% | 9% | No aging | 0 °C |
2 | 20.7% | 12% | Short-term aging | −10 °C |
3 | 23.8% | 15% | Long-term aging | −20 °C |
Group Number | Porosity (%) | Modifier Content (%) | Aging | Test Temperature (°C) |
---|---|---|---|---|
1 | 16.2 | 9 | No aging | 0 |
2 | 16.2 | 12 | Short-term | −10 |
3 | 16.2 | 15 | Long-term | −20 |
4 | 20.7 | 9 | Short-term | −20 |
5 | 20.7 | 12 | Long-term | 0 |
6 | 20.7 | 15 | No aging | −10 |
7 | 23.8 | 9 | Long-term | −10 |
8 | 23.8 | 12 | No aging | −20 |
9 | 23.8 | 15 | Short-term | 0 |
Group Number | Flexural Tensile Strength (MPa) | Maximum Bending Strain (με) | Bending Stiffness Modulus (MPa) |
---|---|---|---|
1 | 5.60 | 4996 | 1120 |
2 | 5.26 | 5388 | 976 |
3 | 5.15 | 5667 | 908 |
4 | 5.57 | 4832 | 1153 |
5 | 5.16 | 5491 | 939 |
6 | 5.05 | 6257 | 807 |
7 | 5.17 | 5220 | 991 |
8 | 5.56 | 5063 | 1098 |
9 | 5.22 | 5915 | 882 |
Evaluation Indicator | Mean Value | Factor Type | |||
A | B | C | D | ||
Porosity | Modifier content | Aging | Test temperature | ||
Flexural tensile strength (MPa) | k1 | 5.33 | 5.45 | 5.40 | 5.20 |
k2 | 5.26 | 5.32 | 5.35 | 5.36 | |
k3 | 5.32 | 5.14 | 5.16 | 5.46 | |
Range | 0.07 | 0.31 | 0.24 | 0.26 | |
Maximum bending strain (με) | k1 | 5550.33 | 5016.00 | 5438.67 | 5621.67 |
k2 | 5526.67 | 5314.00 | 5378.33 | 5467.33 | |
k3 | 5399.33 | 5946.33 | 5459.33 | 5187.33 | |
Range | 176.33 | 930.33 | 81.00 | 434.33 | |
Bending stiffness modulus (MPa) | k1 | 1001.33 | 1088.00 | 1008.33 | 924.67 |
k2 | 966.33 | 1004.33 | 1003.67 | 980.33 | |
k3 | 990.33 | 865.67 | 946.00 | 1053.00 | |
Range | 35.00 | 222.33 | 62.33 | 128.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ng, P.-L.; Gong, Y.; Su, H.; Du, J. Experimental Study of Low Temperature Performance of Porous Asphalt Mixture. Appl. Sci. 2021, 11, 4029. https://doi.org/10.3390/app11094029
Wang J, Ng P-L, Gong Y, Su H, Du J. Experimental Study of Low Temperature Performance of Porous Asphalt Mixture. Applied Sciences. 2021; 11(9):4029. https://doi.org/10.3390/app11094029
Chicago/Turabian StyleWang, Jian, Pui-Lam Ng, Yuhua Gong, Han Su, and Jinsheng Du. 2021. "Experimental Study of Low Temperature Performance of Porous Asphalt Mixture" Applied Sciences 11, no. 9: 4029. https://doi.org/10.3390/app11094029
APA StyleWang, J., Ng, P. -L., Gong, Y., Su, H., & Du, J. (2021). Experimental Study of Low Temperature Performance of Porous Asphalt Mixture. Applied Sciences, 11(9), 4029. https://doi.org/10.3390/app11094029