Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jones, D.; Brischke, C. Performance of Bio-Based Building Materials; Woodhead Publishing: Cambridge, UK, 2017; p. 650. [Google Scholar]
- Werner, F.; Taverna, R.; Hofer, P.; Richter, K. Greenhouse Gas Dynamics of an Increased Use of Wood in Buildings in Switzerland. Clim. Chang. 2006, 74, 319–347. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; p. 487. [Google Scholar]
- Kutnar, A.; Muthu, S.S. Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts; Springer: Berlin/Heidelberg, Germany, 2016; p. 248. [Google Scholar]
- Eaton, R.A.; Hale, M.D.C. Wood: Decay, Pests and Protection; Chapman and Hall Ltd.: New York, NY, USA, 1993; p. 546. [Google Scholar]
- Militz, H. Thermal Treatment of Wood: European Processes and Their Background; Document no. IRG/WP 02-40241; International Research Group on Wood Preservation: Stockholm, Sweden, 2002. [Google Scholar]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Hill, C. Wood modification: An update. BioResources 2011, 6, 918–919. [Google Scholar]
- Čermák, P.; Vahtikari, K.; Rautkari, L.; Laine, K.; Horáček, P.; Baar, J. The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J. Mater. Sci. 2016, 51, 1504–1511. [Google Scholar] [CrossRef]
- Gosselink, R.J.A.; Krosse, A.M.A.; van der Putten, J.C.; van der Kolk, J.C.; de Klerk-Engels, B.; van Dam, J.E.G. Wood preservation by low-temperature carbonization. Ind. Crops Prod. 2004, 19, 3–12. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Hautamäki, S.; Lillqvist, K.; Segerholm, K.; Rautkari, L. Surface modification of solid wood by charring. J. Mater. Sci. 2017, 52, 6111–6119. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Turunen, H.; Čermák, P.; Hautamäki, S.; Rautkari, L. Surface-related characteristics of surface-charred spruce wood. Materials 2018, 11, 2083. [Google Scholar] [CrossRef] [Green Version]
- Čermák, P.; Dejmal, A.; Paschová, Z.; Kymäläinen, M.; Dömény, J.; Brabec, M.; Hess, D.; Rautkari, L. One-sided surface charring of beech wood. J. Mater. Sci. 2019, 54, 9497–9506. [Google Scholar] [CrossRef]
- Viitaniemi, P. Thermowood—Modified Wood for Improved Performance. In Proceedings of the 4th Eurowood Symposium ‘Wood—The Ecological Material’, Stockholm, Sweden, 22–23 September 1997; Trätek Rapport No. P9709084. pp. 67–69. [Google Scholar]
- Jämsä, S.; Ahola, P.; Viitaniemi, P. Performance of coated heat-treated wood. Surf. Coat. Int. 1999, 6, 297–300. [Google Scholar] [CrossRef]
- Jämsä, S.; Ahola, P.; Viitaniemi, P. Long-term natural weathering of coated ThermoWood. Pigment Resin Technol. 2000, 29, 68–74. [Google Scholar] [CrossRef]
- Santos, J.A. Mechanical behaviour of eucalyptus wood modified by heat. Wood Sci. Technol. 2000, 34, 39–43. [Google Scholar] [CrossRef]
- Kamdem, D.P.; Pizzi, A.; Jermannaud, A. Durability of heat-treated wood. Holz als Roh Werkstoff 2002, 60, 1–6. [Google Scholar] [CrossRef]
- Repellin, V.; Guyonnet, R. Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 2005, 59, 28–34. [Google Scholar] [CrossRef]
- Fuwape, J.A. Effects of carbonization temperature on charcoal from some tropical trees. Bioresour. Technol. 1996, 57, 91–94. [Google Scholar] [CrossRef]
- Hakkou, M.; Pétrissans, M.; Zoulalian, A.; Gérardin, P. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stab. 2005, 89, 1–5. [Google Scholar] [CrossRef]
- Frangi, A.; Fontana, M. Charring rates and temperature profiles of wood sections. Fire Mater. 2003, 27, 91–102. [Google Scholar] [CrossRef]
- Byrne, C.E.; Nagle, D.C. Carbonization of wood for advanced materials applications. Carbon 1997, 35, 259–266. [Google Scholar] [CrossRef]
- Weiland, J.J.; Guyonnet, R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh Werkstoff 2003, 61, 216–220. [Google Scholar] [CrossRef]
- Romagnoli, M.; Vittorio, V.; Alessandra, S. Heat treatment effect on lignin and carbohydrates in Corsican pine earlywood and latewood studied by PY–GC–MS technique. J. Wood Chem. Technol. 2018, 38, 57–70. [Google Scholar] [CrossRef]
- Sivonen, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. Magnetic Resonance Studies of Thermally Modified Wood. Holzforschung 2002, 56, 648–654. [Google Scholar] [CrossRef]
- Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 2000, 46, 431–436. [Google Scholar] [CrossRef]
- Sonderegger, W.; Vecellio, M.; Zwicker, P.; Niemz, P. Combined bound water and water vapour diffusion of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 2011, 65, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Steinhagen, P.H. Thermal conductive properties of wood, green or dry, from −40 °C to +100 °C: A literature review. In USDA Forest Service General Technical Report FPL-9; Forest Products Laboratory: Madison, WI, USA, 1977. [Google Scholar]
- Wang, W.; Zhu, Y.; Cao, J.; Sun, W. Correlation between Dynamic Wetting Behavior and Chemical Components of Thermally Modified Wood. Appl. Surf. Sci. 2015, 324, 332–338. [Google Scholar] [CrossRef]
- Pétrissans, M.; Gérardin, P.; El Bakali, I.; Serraj, M. Wettability of Heat-Treated Wood. Holzforschung 2003, 57, 301–307. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Doré, G.; Younsi, R. Effect of Heat Treatment on the Wettability of White Ash and Soft Maple by Water. Holz als Roh und Werkstoff 2008, 66, 355–361. [Google Scholar] [CrossRef]
- Šernek, M.; Kamke, F.A.; Glasser, W.G. Comparative Analysis of Inactivated Wood Surface. Holzforschung 2004, 58, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Areias, A.C.; Ribeiro, C.; Sencadas, V.; Garcia-Giralt, N.; Diez-Perez, A.; Gómez Ribelles, J.L.; Lanceros-Méndez, S. Influence of Crystallinity and Fiber Orientation on Hydrophobicity and Biological Response of Poly(l-Lactide) Electrospun Mats. Soft Matter 2012, 8, 5818–5825. [Google Scholar] [CrossRef] [Green Version]
- Gérardin, P.; Petrič, M.; Petrissans, M.; Lambert, J.; Ehrhrardt, J.J. Evolution of Wood Surface Free Energy after Heat Treatment. Polym. Degrad. Stab. 2007, 92, 653–657. [Google Scholar] [CrossRef]
- Lopes, J. de O.; Garcia, R.A.; do Nascimento, A.M. Wettability of the Surface of Heat-Treated Juvenile Teak Wood Assessed by Drop Shape Analyzer. Maderas Ciencia y Tecnología 2018, 20, 249–256. [Google Scholar]
- Kymäläinen, M.; Rautkari, L.; Hill, C.A.S. Sorption Behaviour of Torrefied Wood and Charcoal Determined by Dynamic Vapour Sorption. J. Mater. Sci. 2015, 50, 7673–7680. [Google Scholar] [CrossRef]
- Jang, E.S.; Kang, C.W. Changes in Gas Permeability and Pore Structure of Wood under Heat Treating Temperature Conditions. J. Wood Sci. 2019, 65, 37. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, M.; Cavalli, D.; Pernarella, R.; Zanuttini, R.; Togni, M. Physical and mechanical characteristics of poor-quality wood after heat treatment. iForest-Biogeosci. For. 2015, 8, 884. [Google Scholar] [CrossRef] [Green Version]
- Virta, J. Cupping of wooden cladding boards in cyclic conditions—a study of heat-treated and non-heat-treated boards. Build. Environ. 2005, 40, 1395–1399. [Google Scholar] [CrossRef]
- Boonstra, M.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz Roh-Werkstoff 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Hill, C. Wood Modification Chemical, Thermal and other Processes; Wiley: Hoboken, NJ, USA, 2006; p. 239. [Google Scholar]
- Kúdela, J.; Čunderlík, I. Beech Wood—Structure, Properties, Use (Bukové Drevo—Štruktúra, Vlastnosti, Použitie); Technická univerzita vo Zvolene: Zvolen, Slovakia, 2012; p. 152. [Google Scholar]
- Bryden, K.M.; Ragland, K.W.; Rutland, C.J. Modeling thermally thick pyrolysis of wood. Biomass Bioenergy 2002, 22, 41–53. [Google Scholar] [CrossRef]
- Metsä-Kortelainen, S.; Antikainen, T.; Viitaniemi, P. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170, 190, 210 and 230 °C. Holz als Roh Werkstoff 2006, 64, 192–197. [Google Scholar] [CrossRef]
- Fortino, S.; Genoese, A.; Genoese, A.; Rautkari, L. FEM simulation of the hygro-thermal behaviour of wood under surface densification at high temperature. J. Mater. Sci. 2013, 48, 7603–7612. [Google Scholar] [CrossRef]
Temperature (°C) | Time I. (min) | Coding | Time II. (min) | Coding |
Reference | - | Ref | ||
200 | 6 | 200/6 | 20 | 200/20 |
250 | 4 | 250/4 | 6 | 250/6 |
300 | 2 | 300/2 | 4 | 300/4 |
350 | 1 | 350/1 | 2 | 350/2 |
400 | 0.5 | 400/0.5 | 1 | 400/1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šeda, V.; Machová, D.; Dohnal, J.; Dömény, J.; Zárybnická, L.; Oberle, A.; Vacenovská, V.; Čermák, P. Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability. Appl. Sci. 2021, 11, 4086. https://doi.org/10.3390/app11094086
Šeda V, Machová D, Dohnal J, Dömény J, Zárybnická L, Oberle A, Vacenovská V, Čermák P. Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability. Applied Sciences. 2021; 11(9):4086. https://doi.org/10.3390/app11094086
Chicago/Turabian StyleŠeda, Vít, Dita Machová, Jakub Dohnal, Jakub Dömény, Lucie Zárybnická, Anna Oberle, Veronika Vacenovská, and Petr Čermák. 2021. "Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability" Applied Sciences 11, no. 9: 4086. https://doi.org/10.3390/app11094086
APA StyleŠeda, V., Machová, D., Dohnal, J., Dömény, J., Zárybnická, L., Oberle, A., Vacenovská, V., & Čermák, P. (2021). Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability. Applied Sciences, 11(9), 4086. https://doi.org/10.3390/app11094086