Isotopic Characterization of Gaseous Mercury and Particulate Water-Soluble Organic Carbon Emitted from Open Grass Field Burning in Aso, Japan
Abstract
:1. Introduction
2. Method and Materials
2.1. Open Grass Field Burning (Noyaki)
2.2. Sampling
2.3. TGM Analysis
2.4. Filter Sample Analysis
3. Results and Discussion
3.1. Blank and Method Validations
3.2. TGM
3.3. LV-WSN in PM from Noyaki
3.4. δ13C of Habitat Plants and LV-WSOC in PM from Noyaki
3.5. Radiocarbon of LV-WSOC in PM
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crutzen, P.J.; Heidt, L.E.; Krasnec, J.P.; Pollock, W.H.; Seiler, W. Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl, and COS. Nature 1979, 282, 253–256. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Yarber, K.F.; Woo, J.H.; Carmichael, G.R. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem. Cycles 2003, 17, 1099. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Penner, J.E. Improving global estimates of atmospheric emissions from biomass burning. J. Geophys. Res. 2004, 109, D14S01. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson., Ö.; Kruså, M.; Zencak, Z.; Sheesley, R.; Granat, L.; Engström, E.; Praveen, P.S.; Rao, P.S.P.; Leck, C.; Rodhe, H. Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 2009, 323, 495–498. [Google Scholar] [CrossRef]
- Friedli, H.R.; Arellano, A.F.; Cinnirella, S.; Pirrone, N. Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ. Sci. Technol. 2009, 43, 3507–3512. [Google Scholar] [CrossRef]
- Pirrone, N.; Mason, R. (Eds.) Mercury emissions from global biomass burning: Spatial and temporal distribution. In Mercury Fate and Transport in the Global Atmosphere: Measurements, Models, and Policy Implications Interim Report of the UNEP Global Mercury Partnership; Springer: Boston, MA, USA, 2008; Chapter 8. [Google Scholar]
- Zhang, W.; Zhang, Y.L.; Cao, F.; Xiang, Y.; Zhang, Y.; Bao, M.; Liu, X.; Lin, Y.C. High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: Method optimization and a case study during winter haze in eastern China. Atmos. Chem. Phys. 2019, 19, 11071–11087. [Google Scholar] [CrossRef] [Green Version]
- Sirignano, C.; Riccio, A.; Chianese, E.; Ni, H.; Zenker, K.; D’Onofrio, A.; Meijer, H.A.J.; Dusek, U. High contribution of biomass combustion to PM2.5 in the city centre of Naples (Italy). Atmosphere 2019, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Bonvalot, L.; Tuna, T.; Fagault, Y.; Jaffrezo, J.L.; Jacob, V.; Chevrier, F.; Bard, E. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the valley of Chamonix: A dual approach based on radiocarbon and levoglucosan. Atmos. Chem. Phys. 2016, 16, 13753–13772. [Google Scholar] [CrossRef] [Green Version]
- Marley, N.A.; Gaffney, J.S.; Tackett, M.; Sturchio, N.C.; Heraty, L.; Martinez, N.; Hardy, K.D.; Marchany-Rivera, A.; Guilderson, T.; MacMillan, A.; et al. The impact of biogenic carbon sources on aerosol absorption in Mexico City. Atmos. Chem. Phys. 2009, 9, 1537–1549. [Google Scholar] [CrossRef] [Green Version]
- Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; et al. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern. Eur. Atmos. Chem. Phys. 2016, 16, 5513–5529. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.; Rudolph, J.; Rohrer, F.; Stein, O. Concentration and stable carbon isotopic composition of ethane and benzene using a global three-dimensional isotope inclusive chemical tracer model. J. Geophys. Res. 2003, 108, 4373. [Google Scholar] [CrossRef]
- Rudolph, J. Gas Chromatography-Isotope Ratio Mass Spectrometry. In Volatile Organic Compounds in the Atmosphere; Koppmann, R., Ed.; Blackwell Publishing: Oxford, UK, 2007; pp. 388–466. [Google Scholar]
- Irei, S.; Takami, A.; Hara, K.; Hayashi, M. Evaluation of transboundary secondary organic aerosol in the urban air of western Japan: Direct comparison of two site observations. ACS Earth Space Chem. 2018, 2, 1231–1239. [Google Scholar] [CrossRef]
- Saccon, M.; Busca, R.; Facca, C.; Huang, L.; Irei, S.; Kornilova, A.; Lane, D.; Rudolph, J. Method for the determination of concentration and stable carbon isotope ratios of atmospheric phenols. Atmos. Meas. Tech. 2013, 6, 2965–2974. [Google Scholar] [CrossRef] [Green Version]
- Hintelmann, H.; Lu, S.Y. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry. Analyst 2003, 128, 635–639. [Google Scholar] [CrossRef]
- Gray, J.E.; Pribil, M.J.; Higueras, P.L. Mercury isotope fractionation during ore retorting in the Almadén mining district. Spain Chem. Geol. 2013, 357, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Wiederhold, J.G.; Smith, R.S.; Siebner, H.; Jew, A.D.; Brown, G.E., Jr.; Bourdon, B.; Kretzschmar, R. Mercury isotope signatures as tracers for Hg cycling at the new Idria Hg mine. Environ. Sci. Technol. 2013, 47, 6137–6145. [Google Scholar] [CrossRef]
- Sun, R.; Sonke, J.E.; Heimburger, L.E.; Belkin, H.E.; Liu, G.; Shome, D.; Cukrowska, E.; Liousse, C.; Pokrovsky, O.S.; Streets, D.G. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions. Environ. Sci. Technol. 2014, 46, 7660–7668. [Google Scholar] [CrossRef] [PubMed]
- Washburn, S.J.; Blum, J.D.; Johnson, M.W.; Tomes, J.M.; Carnell, P.J. Isotopic characterization of mercury in natural gas via analysis of mercury removal unit catalysis. ACS Earth Space Chem. 2018, 2, 462–470. [Google Scholar] [CrossRef]
- Zambardi, T.; Sonke, J.E.; Toutain, J.P.; Sortino, F.; Shinohara, H. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet. Sci. Lett. 2009, 277, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Irei, S. Development of fast sampling and high recovery extraction method for stable isotope measurement of gaseous mercury. Appl. Sci. 2020, 10, 6691. [Google Scholar] [CrossRef]
- Ministry of Environment, Report of Grass Field Scenery Sustentation in National Park. 2001. Available online: https://www.aso-sougen.com/data/h13/index.html (accessed on 20 September 2021).
- Yoshimura, Y. Re-examination of occurrence of C4 plants in Japan. Jpn. J. Crop. Sci. 2015, 84, 386–407. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Toda, Y. Vegetation and landscate in Aso. J. Jpn. Inst. Landsc. Archit. 1994, 57, 338–345. (In Japanese) [Google Scholar]
- Sage, R.F.; Li, M.; Monson, R.K. The Taxonomic distribution of C4 photosynthesis. In C4 Plant Biology; Sage, R.F., Monson, R.K., Eds.; Academic Press: San Diego, CA, USA, 1999; pp. 551–584. [Google Scholar]
- Yoshimura, Y. Variety of C4 Leaves. Available online: http://cse.naro.affrc.go.jp/yyoshi/leafstructure.html (accessed on 20 October 2021).
- Irei, S.; Takami, A.; Hayashi, M.; Sadanaga, Y.; Hara, K.; Kaneyasu, N.; Sato, K.; Arakaki, T.; Hatakeyama, S.; Bandow, H.; et al. Transboundary secondary organic aerosol in western Japan indicated by the δ13C of water-soluble organic carbon and the m/z 44 signal in organic aerosol mass spectra. Environ. Sci. Technol. 2014, 48, 6273–6281. [Google Scholar] [CrossRef] [PubMed]
- Demers, J.D.; Blum, J.D.; Zak, D.R. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Glob. Biogeochem. Cycles 2013, 27, 222–238. [Google Scholar] [CrossRef]
- Jiskra, M.; Wiederhold, J.G.; Skyllberg, U.; Kronberg, R.M.; Hajdas, I.; Kretzschmar, R. Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ. Sci. Technol. 2015, 49, 7188–7196. [Google Scholar] [CrossRef]
- Yin, R.; Feng, X.; Meng, B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China. Environ. Sci. Technol. 2013, 47, 2238–2245. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Fu, X.; Yin, R.; Zhang, H.; Wang, X.; Lin, C.J.; Wu, C.; Zhang, Y.; He, N.; Fu, P.; et al. Isotopic compositions of atmospheric mercury in China: New evidence for sources and transformation processes in air and in vegetation. Environ. Sci. Technol. 2016, 50, 9262–9269. [Google Scholar] [CrossRef]
- Zheng, W.; Obrist, D.; Weis, D.; Bergquist, B.A. Mercury isotope compositions across North American forests. Glob. Biogeochem. Cycles 2016, 30, 1475–1492. [Google Scholar] [CrossRef] [Green Version]
- Blum, J.D.; Bergquist, B.A. Reporting of variations in the natural isotopic composition of mercury. Anal. Bioanal. Chem. 2007, 388, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Suto, N.; Kawashima, H. Measurement report: Source characteristics of water-soluble organic carbon in PM2.5 at two sites in Japan, as assessed by long-term observation and stable carbon isotope ratio. Atmos. Chem. Phys. 2021, 21, 11815–11828. [Google Scholar]
- Stuiver, M.; Polach, H.A. Discussion: Reporting of 14C data. Radiocarbon 1977, 19, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Mook, W.G.; Van der Plicht, J. Reporting 14C activities and concentrations. Radiocarbons 1999, 41, 227–239. [Google Scholar] [CrossRef] [Green Version]
Scheme 199 | Total Hg Sampled | Conc. in air | δ199Hg | δ200Hg | δ201Hg | δ202Hg | δ204Hg |
---|---|---|---|---|---|---|---|
ng | ng m−3 | ‰ | |||||
Noyaki samples | |||||||
24 March 2019, Daikanpou BAuT * | 14.5 | 3.7 | −0.58 | −0.58 | −1.01 | −0.93 | −1.40 |
6 April 2019, Namino BAuT * | 5.0 | 1.4 | −1.11 | −0.69 | −1.23 | −1.37 | 1.18 |
23 March 2021, Ubuyama BAuT | 38.0 | 4.0 | −0.60 | −0.66 | −1.40 | −1.34 | −1.99 |
27 March 2021, Kitayama BAuT | 43.7 | 4.3 | −0.54 | −0.57 | −1.01 | −1.03 | −1.43 |
Background air samples | |||||||
31 March 2019, Namino BAuT * | 5.7 | 0.8 | −0.05 | 0.44 | 0.35 | 1.06 | 1.30 |
23 May 2019, Namino BAuT * | 15.0 | 0.7 | −0.02 | 0.13 | −0.06 | 0.16 | 0.49 |
19 April 2021, Komezuka BAuT | 17.0 | 1.0 | −0.29 | −0.15 | −0.12 | −0.11 | −0.24 |
23 April 2021, Ubuyama BAuT | 18.7 | 1.0 | −0.34 | −0.27 | −0.11 | 0.03 | −0.17 |
10 May 2021, Kitayama BAuT | 38.0 | 1.3 | −0.21 | −0.18 | −0.29 | −0.28 | −-0.32 |
Sample | δ199Hg | δ200Hg | δ201Hg | δ202Hg | δ204Hg |
---|---|---|---|---|---|
‰ | |||||
Noyaki samples | |||||
24 March 2019, Daikanpou BAuT | −0.66 | −0.91 | −1.48 | −1.62 | −2.29 |
2019 April 6, Namino BAuT | −1.19 | −1.02 | −1.70 | −2.06 | 0.29 |
23 March 2021, Ubuyama BAuT | −0.68 | −0.99 | −1.87 | −2.03 | −2.88 |
27 March 2021, Kitayama BAuT | −0.62 | −0.90 | −1.48 | −1.72 | −2.32 |
Background air samples | |||||
31 March 2019, Namino BAuT | −0.13 | 0.11 | −0.12 | 0.37 | 0.41 |
23 May 2019, Namino BAuT | −0.10 | −0.20 | −0.53 | −0.53 | −0.40 |
19 April 2021, Komezuka BAuT | −0.37 | −0.48 | −0.59 | −0.80 | −1.13 |
23 April 2021, Ubuyama BAuT | −0.42 | −0.60 | −0.58 | −0.66 | −1.06 |
10 May 2021, Kitayama BAuT | −0.29 | −-0.51 | −0.76 | −0.97 | −1.21 |
Sample | Nitrogen | Carbon | |||
---|---|---|---|---|---|
Mass * | Conc. * | Mass * | Conc. * | δ13CVPDB * | |
µgN filter−1 | µgN m−3 | µgC filter−1 | µgC m−3 | ‰ | |
Noyaki samples | |||||
24 March 2019, Daikanpo 1st BAuT filter 1 | LDL † | LDL † | 102 | 37 | −14.43 |
24 March 2019, Daikanpo 1st BAuT filter 2 | 2 | 0.6 | 128 | 36 | −18.36 |
24 March 2019, Daikanpo 1st BAuT filter 3 | 5 | 1.3 | 584 | 140 | −18.96 |
24 March 2019, Daikanpo 2nd BAuT filter 2 | LDL † | LDL † | 85 | 28 | −20.89 |
24 March 2019, Daikanpo filter 1 | 3 | 2.5 | 71 | 53 | −13.81 |
24 March 2019, Daikanpo filter 2 | 0 | 0.2 | 68 | 40 | −17.39 |
24 March 2019, Daikanpo filter 3 | 23 | 11.6 | 396 | 203 | −19.03 |
24 March 2019, Daikanpo filter 4 | 1 | 1.0 | 69 | 47 | −20.38 |
6 April 2019, Namino BAuT filter | 56 | 16.0 | 472 | 135 | −19.36 |
6 April 2019, Namino noyaki filter | 36 | 21.1 | 323 | 191 | −19.11 |
14 March 2021, Komezuka BAuT filter | 2 | 0.2 | 127 | 11 | −14.10 |
23 March 2021, Ubuyama BAuT filter | 84 | 8.7 | 1018 | 106 | −21.65 |
27 March 2021, Kitayama BAuT filter 1 | LDL † | LDL † | 202 | 38 | −17.56 |
27 March 2021, Kitayama BAuT filter 2 | 4 | 1.8 | 517 | 243 | −18.94 |
27 March 2021, Kitayama BAuT filter 3 | LDL † | LDL † | 107 | 39 | −16.26 |
Background air samples | |||||
31 March 2019, Namino background | 3 | 0.5 | 7 | 1 | 1.90 |
23 May 2019, Namino background | NA ‡ | NA ‡ | NA ‡ | NaA‡ | Na ‡ |
23 April 2021, Ubuyama background | 9 | 0.5 | 18 | 1 | −9.34 |
10 May 2021, Kitayama background | 49 | 1.7 | 32 | 1 | −13.90 |
25 May 2021, Kitayama background | 11 | 0.4 | 25 | 1 | −13.04 |
1 June 2021, Namino background | 7 | 0.3 | 2 | 0.1 | 14.31 |
Sample | δ13C | pMC † | pMC ‡ |
---|---|---|---|
‰ | % | % | |
24 March 2019, Daikanpou | −17.2 ± 0.2 | 101.2 ± 0.3 | 99.5 ± 0.3 |
6 April 2019, Namino | −16.8 ± 0.2 | 99.8 ± 0.3 | 98.1 ± 0.3 |
27 March 2021, Kitayama | −22.4 ± 0.2 | 100.1 ± 0.3 | 99.6 ± 0.3 |
23 March 2021, Ubuyama | −18.8 ± 0.3 | 99.4 ± 0.3 | 98.2 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irei, S. Isotopic Characterization of Gaseous Mercury and Particulate Water-Soluble Organic Carbon Emitted from Open Grass Field Burning in Aso, Japan. Appl. Sci. 2022, 12, 109. https://doi.org/10.3390/app12010109
Irei S. Isotopic Characterization of Gaseous Mercury and Particulate Water-Soluble Organic Carbon Emitted from Open Grass Field Burning in Aso, Japan. Applied Sciences. 2022; 12(1):109. https://doi.org/10.3390/app12010109
Chicago/Turabian StyleIrei, Satoshi. 2022. "Isotopic Characterization of Gaseous Mercury and Particulate Water-Soluble Organic Carbon Emitted from Open Grass Field Burning in Aso, Japan" Applied Sciences 12, no. 1: 109. https://doi.org/10.3390/app12010109
APA StyleIrei, S. (2022). Isotopic Characterization of Gaseous Mercury and Particulate Water-Soluble Organic Carbon Emitted from Open Grass Field Burning in Aso, Japan. Applied Sciences, 12(1), 109. https://doi.org/10.3390/app12010109