A Multi-Component Physiotherapeutic Intervention among Schoolchildren with Myopia: 3D-Based Vision Training Program with Auditory Frequency Entrainment and Electrical Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Vision Training
2.3. FFR
2.4. Bilateral Orbital ES
2.5. Study Design
2.6. Outcome Evaluation
2.7. Protocol of Stage 1
2.8. Protocol of Stage 2
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.L.K.; Shih, Y.F.; Hsiao, C.K.; Chen, C.J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann. Acad. Med. Singap. 2004, 33, 27–33. [Google Scholar] [PubMed]
- Wu, P.-C.; Tsai, C.-L.; Hu, C.-H.; Yang, Y.-H. Effects of Outdoor Activities on Myopia among Rural School Children in Taiwan. Ophthalmic Epidemiol. 2010, 17, 338–342. [Google Scholar] [CrossRef]
- Eye Disease Case-Control Study Group. Risk factors for idiopathic rhegmatogenous retinal detachment. Am. J. Epidemiol. 1993, 137, 749–757. [Google Scholar] [CrossRef]
- Younan, C.; Mitchell, P.; Cumming, R.; Rochtchina, E.; Wang, J.J. Myopia and incident cataract and cataract surgery: The blue mountains eye study. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3625–3632. [Google Scholar]
- Qiu, M.; Wang, S.Y.; Singh, K.; Lin, S.C. Association between Myopia and Glaucoma in the United States Population. Investig. Opthalmol. Vis. Sci. 2013, 54, 830–835. [Google Scholar] [CrossRef] [PubMed]
- WHO. Universal Eye Health: A Global Action Plan 2014–2019; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- WHO. The Impact of Myopia and High Myopia: Report of the Joint World Health Organization-Brien Holden Vision Institute Global Scientific Meeting on Myopia; University of New South Wales, Press: Sydney, Australia, 2017. [Google Scholar]
- WHO. Vision 2020: The Right to Sight; WHO Regional Office for South-East Asia, Press: New Delhi, India, 2001. [Google Scholar]
- Chakraborty, R.; Read, S.A.; Vincent, S.J. Understanding Myopia: Pathogenesis and Mechanisms. In Updates on Myopia; Springer: Singapore, 2020; pp. 65–94. [Google Scholar]
- Mak, C.Y.; Yam, J.C.; Chen, L.J.; Lee, S.M.; Young, A.L. Epidemiology of myopia and prevention of myopia progression in children in East Asia: A review. Hong Kong Med. J. 2018, 24, 602–609. [Google Scholar] [CrossRef] [PubMed]
- French, A.N.; Ashby, R.; Morgan, I.; Rose, K. Time outdoors and the prevention of myopia. Exp. Eye Res. 2013, 114, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-C.; Tsai, C.-L.; Wu, H.-L.; Yang, Y.-H.; Kuo, H.-K. Outdoor Activity during Class Recess Reduces Myopia Onset and Progression in School Children. Ophthalmology 2013, 120, 1080–1085. [Google Scholar] [CrossRef]
- Yeh, M.-L.; Chen, C.-H.; Chen, H.-H.; Lin, K.-C. An Intervention of Acupressure and Interactive Multimedia to Improve Visual Health among Taiwanese Schoolchildren. Public Health Nurs. 2008, 25, 10–17. [Google Scholar] [CrossRef]
- Wei, M.L.; Liu, J.P.; Li, N.; Liu, M. Acupuncture for slowing the progression of myopia in children and adolescents. Cochrane Database Syst. Rev. 2011, 9, 1–11. [Google Scholar] [CrossRef]
- Sha, F.; Ye, X.; Zhao, W.; Xu, C.-L.; Wang, L.; Ding, M.-H.; Bi, A.-L.; Wu, J.-F.; Jiang, W.-J.; Guo, D.-D.; et al. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia. Neuroscience 2014, 287, 164–174. [Google Scholar] [CrossRef]
- Rawstron, J.A.; Burley, C.D.; Elder, M.J. A Systematic Review of the Applicability and Efficacy of Eye Exercises. J. Pediatr. Ophthalmol. Strabismus 2005, 42, 82–88. [Google Scholar] [CrossRef]
- Allen, P.M.; Radhakrishnan, H.; Rae, S.; Calver, R.I.; Theagarayan, B.P.; Nelson, P.; Osuobeni, E.; Sailoganathan, A.; Price, H.; O’Leary, D.J. Aberration Control and Vision Training as an Effective Means of Improving Accommodation in Individuals with Myopia. Investig. Opthalmol. Vis. Sci. 2009, 50, 5120–5129. [Google Scholar] [CrossRef]
- Li, S.-M.; Kang, M.-T.; Peng, X.-X.; Li, S.-Y.; Wang, Y.; Li, L.; Yu, J.; Qiu, L.-X.; Sun, Y.-Y.; Liu, L.-R.; et al. Efficacy of Chinese Eye Exercises on Reducing Accommodative Lag in School-Aged Children: A Randomized Controlled Trial. PLoS ONE 2015, 10, e0117552. [Google Scholar] [CrossRef] [PubMed]
- Coffey, E.B.J.; Nicol, T.; White-Schwoch, T.; Chandrasekaran, B.; Krizman, J.; Skoe, E.; Zatorre, R.J.; Kraus, N. Evolving perspectives on the sources of the frequency-following response. Nat. Commun. 2019, 10, 5036. [Google Scholar] [CrossRef]
- Perin, C.; Vigano’, B.; Piscitelli, D.; Matteo, B.M.; Meroni, R.; Cerri, C.G. Non-invasive current stimulation in vision recovery: A review of the literature. Restor. Neurol. Neurosci. 2020, 38, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Val’Kova, I.V.; Niurenberg, O.I. Use of electroacupuncture reflexotherapy in myopia. Vestn. Oftal’ Mologii 1989, 105, 33–35. [Google Scholar]
- Li, Y.-H.; Wang, Z.-Q.; Wei, D. Biological effect of electrical plum-blossom needle for treatment of juvenile myopia. Zhongguo Zhen Jiu = Chin. Acupunct. Moxibustion 2007, 27, 725–728. [Google Scholar]
- Zhang, T.; Jiang, Q.; Xu, F.; Zhang, R.; Liu, D.; Guo, D.; Wu, J.; Wen, Y.; Wang, X.; Jiang, W.; et al. Alternation of Resting-State Functional Connectivity Between Visual Cortex and Hypothalamus in Guinea Pigs with Experimental Glucocorticoid Enhanced Myopia after the Treatment of Electroacupuncture. Front. Aging Neurosci. 2021, 14, 579769. [Google Scholar] [CrossRef]
- De Graaf, T.A.; Gross, J.; Paterson, G.; Rusch, T.; Sack, A.; Thut, G. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation. PLoS ONE 2013, 8, e60035. [Google Scholar] [CrossRef]
- Levine, D.; Bockstahler, B. Electrical Stimulation. In Canine Rehabilitation and Physical Therapy; Saunders: Philadelphia, PA, USA, 2014; pp. 342–358. [Google Scholar]
- Lee, K.S. Effect of Electrical Stimulation on Uptake and Release of Calcium by the Endoplasmic Reticulum. Nat. Cell Biol. 1965, 207, 85–86. [Google Scholar] [CrossRef]
- Walters, T.J.; Sweeney, H.L.; Farrar, R.P. Influence of electrical stimulation on a fast-twitch muscle in aging rats. J. Appl. Physiol. 1991, 71, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Kaiti, R.; Shyangbo, R.; Sharma, I.P.; Dahal, M. Review on current concepts of myopia and its control strategies. Int. J. Ophthalmol. 2021, 14, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.A.A.R. Vision Therapy-Based Program for Myopia Control in Adolescents. Middle-East J. Sci. Res. 2013, 13, 390–396. [Google Scholar]
- Park, S.Y.; Yoon, Y.D.; Kim, D.H.; Lee, D.H. Improvement effect of Functional Myopia by Using of Vision Training Device (OTUS). J. Korea Converg. Soc. 2020, 11, 147–154. [Google Scholar]
- Chandler, K.A. The Effect of Monaural and Binaural Tones of Different Intensities on the Visual Perception of Verticality. Am. J. Psychol. 1961, 74, 260. [Google Scholar] [CrossRef]
- Naruse, S.; Mori, K.; Kurihara, M.; Nakajima, N.; Matsumoto, Y.; Kinoshita, S.; Ohyama, Y.; Nakamura, T. Chorioretinal blood flow changes following acupuncture between thumb and forefinger. Nippon. Ganka Gakkai Zasshi 2000, 104, 717–723. [Google Scholar] [CrossRef]
- An, Y.-S.; Moon, S.-K.; Min, I.-K.; Kim, D.-Y. Changes in Regional Cerebral Blood Flow and Glucose Metabolism Following Electroacupuncture at LI 4 and LI 11 in Normal Volunteers. J. Altern. Complement. Med. 2009, 15, 1075–1081. [Google Scholar] [CrossRef]
- Li, G.; Cheung, R.T.F.; Ma, Q.-Y.; Yang, E.S. Visual cortical activations on fMRI upon stimulation of the vision-implicated acupoints. Neuro. Rep. 2003, 14, 669–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Frequency | Percentage | |
---|---|---|---|
Gender | |||
Male | 11 | 40.7 | |
Female | 16 | 59.3 | |
Age (years) | |||
10 | 9 | 33.3 | |
11 | 12 | 44.4 | |
12 | 6 | 22.2 | |
Myopia status of father | |||
No | 13 | 48.2 | |
Yes | 14 | 51.8 | |
Myopia status of mother | |||
No | 15 | 55.6 | |
Yes | 12 | 44.4 | |
Education of father | |||
≤12 years | 11 | 40.7 | |
>12 years | 16 | 59.3 | |
Education of mother | |||
≤12 years | 9 | 33.3 | |
>12 years | 18 | 66.7 | |
Outside activity during the previous 3 month | |||
No | 3 | 11.1 | |
Yes | 24 | 88.9 |
Intervention | Before | After | Mean Difference | pa |
---|---|---|---|---|
Control | 0.60 ±0.33 | 0.58 ± 0.33 | −0.02 ± 0.08 b,c | 0.08 |
VT | 0.62 ± 0.36 | 0.54 ± 0.33 | −0.07 ± 0.43 | 0.22 |
VT-FFR | 0.63 ± 0.36 | 0.56 ± 0.32 | −0.08 ± 0.11 d | <0.001 |
VT-FFR-ES | 0.60 ± 0.34 | 0.46 ± 0.28 | −0.13 ± 0.14 | <0.001 |
Control Group | VT-FFR-ES | ||||||
---|---|---|---|---|---|---|---|
Before | After | Change in Refraction | Before | After | Change in Refraction | p * | |
Spherical equivalent (D) | −2.56 ± 1.79 | −2.66 ± 1.91 | −0.10 ± 0.26 | −2.59 ± 1.88 | −2.38 ± 1.72 | 0.21 ± 0.32 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Y.-K.; Chang, C.-W.; Lee, S.-D. A Multi-Component Physiotherapeutic Intervention among Schoolchildren with Myopia: 3D-Based Vision Training Program with Auditory Frequency Entrainment and Electrical Stimulation. Appl. Sci. 2022, 12, 201. https://doi.org/10.3390/app12010201
Teng Y-K, Chang C-W, Lee S-D. A Multi-Component Physiotherapeutic Intervention among Schoolchildren with Myopia: 3D-Based Vision Training Program with Auditory Frequency Entrainment and Electrical Stimulation. Applied Sciences. 2022; 12(1):201. https://doi.org/10.3390/app12010201
Chicago/Turabian StyleTeng, Yu-Kuei, Chi-Wu Chang, and Shin-Da Lee. 2022. "A Multi-Component Physiotherapeutic Intervention among Schoolchildren with Myopia: 3D-Based Vision Training Program with Auditory Frequency Entrainment and Electrical Stimulation" Applied Sciences 12, no. 1: 201. https://doi.org/10.3390/app12010201
APA StyleTeng, Y. -K., Chang, C. -W., & Lee, S. -D. (2022). A Multi-Component Physiotherapeutic Intervention among Schoolchildren with Myopia: 3D-Based Vision Training Program with Auditory Frequency Entrainment and Electrical Stimulation. Applied Sciences, 12(1), 201. https://doi.org/10.3390/app12010201