Analysis of the Vibration Behaviors of Rotating Composite Nano-Annular Plates Based on Nonlocal Theory and Different Plate Theories
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Distribution of Material Properties
2.2. Nonlocal Elasticity Theory
2.3. Axisymmetric Annular Plate Governing Equations
3. Calculation Results and Analysis
3.1. Validation
3.2. The Influence of the Ratio of the Inner and Outer Radius on Frequencies
3.3. The Influence of Rotational Velocity on Frequencies
3.4. The Influence of Functionally Gradient Index on Frequencies
3.5. The Influence of Nonlocal Parameter on Frequencies
3.6. The Influence of Temperature Change on Frequencies
3.7. The Influence of Different Plate Theories on Frequencies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chen, L.; Nakamura, M.; Schindler, T.D.; Parker, D.R.; Bryant, Z. Engineering controllable bidirectional molecular motors based on myosin. Nat. Nanotechnol. 2012, 7, 252–256. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhao, L.; Gao, X.; Zhao, Y.; Zhou, R. Rotation Motion of Designed Nano-Turbine. Sci. Rep. 2015, 4, 5846. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, W.; Zhao, X.; Wu, X.; Liu, W.; Huang, X.; Shao, S. The study of an electromagnetic levitating micromotor for application in a rotating gyroscope. Sens. Actuators A Phys. 2006, 132, 651–657. [Google Scholar] [CrossRef]
- Ayers, J.A.; Tang, W.; Chen, Z. 360° rotating micro mirror for transmitting and sensing optical coherence tomography signals. Proc. IEEE Sens. 2004, 9, 497–500. [Google Scholar]
- Khatua, S.; Guerrero, J.M.; Claytor, K.; Vives, G.; Kolomeisky, A.B.; Tour, J.M.; Link, S. Micrometer-Scale Translation and Monitoring of Individual Nanocars on Glass. ACS Nano 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Alireza, B.; Xia, Y.C. Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field. J. Microsyst. Technol. 2018, 25, 1077–1805. [Google Scholar]
- Azimi, M.; Mirjavadi, S.S.; Shafiei, N.; Hamouda, A.M.S. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam. Appl. Phys. A 2016, 123, 104. [Google Scholar] [CrossRef]
- Baghani, M.; Mohammadi, M.; Farajpour, A. Dynamic and Stability Analysis of the Rotating Nanobeam in a Nonuniform Magnetic Field Considering the Surface Energy. Int. J. Appl. Mech. 2016, 8, 1650048. [Google Scholar] [CrossRef]
- Shafiei, N.; Ghadiri, M.; Mahinzare, M. Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment. Mech. Adv. Mater. Struct. 2019, 26, 139–155. [Google Scholar] [CrossRef]
- Ghadiri, M.; Shafiei, N. Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method. J. Vib. Control 2017, 23, 3247–3265. [Google Scholar] [CrossRef]
- Mahinzare, M.; Barouti, M.; Ghadiri, M. Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment. Microsyst. Technol. 2018, 24, 1695–1711. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, S.; Xiao, Z.; Habibi, M. Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk. Mech. Adv. Mater. Struct. 2020, 3, 1–14. [Google Scholar] [CrossRef]
- Eringen, A.C.; Edelen, D. On nonlocal elasticity. J. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Lim, C.W. On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: Equilibrium, governing equation and static deflection. Appl. Math. Mech. 2010, 31, 37–54. [Google Scholar] [CrossRef]
- Lim, C.; Islam, M.; Zhang, G. A nonlocal finite element method for torsional statics and dynamics of circular nanostructures. Int. J. Mech. Sci. 2015, 94–95, 232–243. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, C. Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure. Int. J. Mech. Sci. 2012, 54, 57–68. [Google Scholar] [CrossRef]
- Thai, H.T. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. J. Int. J. Eng. Sci. 2012, 52, 56–64. [Google Scholar] [CrossRef]
- Asemi, S.R.; Farajpour, A. Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium. Curr. Appl. Phys. 2014, 14, 814–832. [Google Scholar] [CrossRef]
- Eltaher, M.; Emam, S.A.; Mahmoud, F. Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 2012, 218, 7406–7420. [Google Scholar] [CrossRef]
- Li, C.; Sui, S.H.; Chen, L.; Yao, L.Q. Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale. J. Smart Struct. Syst. 2018, 21, 279–286. [Google Scholar]
- Li, C.; Liu, J.; Cheng, M.; Fan, X. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos. Part B Eng. 2017, 116, 153–169. [Google Scholar] [CrossRef]
- Li, C. On vibration responses of axially travelling carbon nanotubes considering nonlocal weakening effect. J. Vib. Eng. Technol. 2016, 4, 175–181. [Google Scholar]
- Wang, P.Y.; Li, C.; Li, S. Bending Vertically and Horizontally of Compressive Nano-rods Subjected to Nonlinearly Distributed Loads Using a Continuum Theoretical Approach. J. Vib. Eng. Technol. 2020, 8, 947–957. [Google Scholar] [CrossRef]
- Reddy, J.N.; Chin, C.D. Thermomechanical Analysis of functionally graded cylinders and plates. J. Therm. Stress. 1998, 21, 593–626. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Liew, K.; Han, J.-B.; Xiao, Z. Vibration Analysis of Circular Mindlin Plates Using the Differential Quadrature Method. J. Sound Vib. 1997, 205, 617–630. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Es’Haghi, M.; Taher, H.R.D.; Fadaie, M. Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory. J. Sound Vib. 2010, 329, 3382–3396. [Google Scholar] [CrossRef]
- Guo, X.F.; Ma, L. Vibration analysis of rotating functionally gradient nano annular plates in thermal environment. J. Appl. Math. Mech. 2020, 41, 1224–1236. [Google Scholar]
- Madani, S.H.; Sabour, M.H.; Fadaee, M. Molecular dynamics simulation of vibrational behavior of annular graphene sheet: Identification of nonlocal parameter. J. Mol. Graph. Modell. 2018, 79, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Mechab, B.; Mechab, I.; Benaissa, S. Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermo-mechanical loading. Compos. Part B Eng. 2012, 43, 1453–1458. [Google Scholar] [CrossRef]
- Radaković, A.; Čukanović, D.; Bogdanović, G.; Blagojević, M.; Stojanović, B.; Dragović, D.; Manić, N. Thermal Buckling and Free Vibration Analysis of Functionally Graded Plate Resting on an Elastic Foundation According to High Order Shear Deformation Theory Based on New Shape Function. Appl. Sci. 2020, 10, 4190. [Google Scholar] [CrossRef]
- Lim, C.; Zhang, G.; Reddy, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 2015, 78, 298–313. [Google Scholar] [CrossRef]
Mode | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
C-C | This paper | 10.215 | 39.771 | 89.102 | 158.18 | 246.99 | 355.54 |
Literature [27] | 10.215 | 39.771 | 89.102 | 158.18 | 246.99 | 355.54 | |
C-F | This paper | 9.0026 | 38.443 | 87.749 | 156.81 | 245.62 | 354.17 |
Literature [27] | 9.0026 | 38.443 | 87.749 | 156.81 | 245.62 | 354.17 |
Material | P−1 | P0 | P1 | P2 | P3 | |
---|---|---|---|---|---|---|
Ec/Pa | Si3N4 | 0 | 348.43 × 109 | −3.070 × 10−4 | 2.160 × 10−7 | −8.946 × 10−11 |
Em/Pa | SUS304 | 0 | 201.04 × 109 | 3.079 × 10−4 | −6.534 × 10−7 | 0 |
αc/K−1 | Si3N4 | 0 | 5.8723 × 10−6 | 9.095 × 10−4 | 0 | 0 |
αm/K−1 | SUS304 | 0 | 12.330 × 10−6 | 8.086 × 10−4 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, W.; Yao, L. Analysis of the Vibration Behaviors of Rotating Composite Nano-Annular Plates Based on Nonlocal Theory and Different Plate Theories. Appl. Sci. 2022, 12, 230. https://doi.org/10.3390/app12010230
Li H, Wang W, Yao L. Analysis of the Vibration Behaviors of Rotating Composite Nano-Annular Plates Based on Nonlocal Theory and Different Plate Theories. Applied Sciences. 2022; 12(1):230. https://doi.org/10.3390/app12010230
Chicago/Turabian StyleLi, Haonan, Wei Wang, and Linquan Yao. 2022. "Analysis of the Vibration Behaviors of Rotating Composite Nano-Annular Plates Based on Nonlocal Theory and Different Plate Theories" Applied Sciences 12, no. 1: 230. https://doi.org/10.3390/app12010230
APA StyleLi, H., Wang, W., & Yao, L. (2022). Analysis of the Vibration Behaviors of Rotating Composite Nano-Annular Plates Based on Nonlocal Theory and Different Plate Theories. Applied Sciences, 12(1), 230. https://doi.org/10.3390/app12010230