Effect of the Distribution of Mass and Structural Member Discretization on the Seismic Response of Steel Buildings
Abstract
:1. Introduction
2. Literature Review
3. Objectives
4. Methodology and Procedure
4.1. Structural Models
4.2. Earthquake Loading
4.3. M and C Matrices
- (a)
- if Ko is used, the elements of the C matrix will not change as the structure behaves inelastically (reducing its stiffness),
- (b)
- The implication of this is that the fractions of critical damping will increase [43].
- (c)
- The use of the Kt matrix has been incorrectly criticized due to the fact that when the structure behaves inelastically one did not expect a reduction of damping, but an increment due to the nonlinear behavior. However, such extra damping is considered by the hysteretic behavior of the material.
5. Concentrated vs. Consistent Mass
5.1. Comparison for Global Parameters
5.2. Comparison for Local Parameters
6. One vs. More than One Element per Member
6.1. Global Response Parameters, Two Elements per Beam (2E)
6.2. Local Response Parameters, Two Elements per Beam (2E)
6.3. Global and Local Parameters, 2 Intermediate Nodes
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Osman, A.; Ghobarah, A.; Korol, R.M. Implications of design philosophies for seismic response of steel moment frames. Earthq. Eng. Struct. Dyn. 1995, 24, 127–143. [Google Scholar] [CrossRef]
- Li, G.; Li, J. Advanced Analysis and Design of Steel Frames; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ozel, H.F.; Saritas, A.; Tasbahji, T. Consistent matrices for steel framed structures with semi-rigid connections accounting for shear deformation and rotary inertia effects. Eng. Struct. 2017, 137, 194–203. [Google Scholar] [CrossRef]
- European Committee for Standardization. Eurocode 8 EN 1998-1: Design of Structures for Earthquake Resistance, Part 1, General Rules, Seismic Actions and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- International Code Council. International Building Code (IBC); International Code Council: Washington, DC, USA, 2009; ISBN 9781580017428. [Google Scholar]
- Canadian Commission on Building and Fire Codes. The National Building Code of Canada; National Research Council of Canada: Ottawa, ON, Canada, 2010.
- Jennings, P.C. Equivalent viscous damping for yielding structures. J. Eng. Mech. Div. ASCE 1968, 94, 103–116. [Google Scholar] [CrossRef]
- Gulkan, P.; Sozen, M. Inelastic response of reinforced concrete structures to earthquake motions. ACI J. 1974, 71, 604–610. [Google Scholar]
- Iwan, W.D. Estimating inelastic response spectra from elastic spectra. Earthq. Eng. Struct. Dyn. 1980, 8, 375–388. [Google Scholar] [CrossRef]
- Hadjian, A.H. A re-evaluation of equivalent linear models for simple yielding systems. Earthq. Eng. Struct. Dyn. 1982, 10, 759–767. [Google Scholar] [CrossRef]
- Wijesundara, K.K.; Nascimbene, R.; Sullivan, T.J. Equivalent viscous damping for steel concentrically braced frame structures. Bull. Earthq. Eng. 2011, 9, 1535–1558. [Google Scholar] [CrossRef]
- Weare, W.; Gere, J. Matrix Analysis of Framed Structures; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Qin, H.; Li, L. Error Caused by Damping Formulating in Multiple Support Excitation Problems. Appl. Sci. 2020, 10, 8180. [Google Scholar] [CrossRef]
- Yang, P.; Xue, S.; Xie, L.; Cao, M. Damping Estimation of an Eight-Story Steel Building Equipped with Oil Dampers. Appl. Sci. 2020, 10, 8989. [Google Scholar] [CrossRef]
- Mohamed, O.; Khattab, R. Assessment of Progressive Collapse Resistance of Steel Structures with Moment Resisting Frames. Buildings 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Shehu, R.; Angjeliu, G.; Bilgin, H. A Simple Approach for the Design of Ductile Earthquake-Resisting Frame Structures Counting for P-Delta Effect. Buildings 2019, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Archer, J.S. Consistent matrix formulations for structural analysis using finite-element techniques. AIAA J. 1965, 3, 1910–1918. [Google Scholar] [CrossRef]
- Rea, D.; Clough, R.W.; Bouwkamp, J.G. Damping Capacity of a Model Steel Structure; American Iron and Steel Institute: Washington, DC, USA, 1971. [Google Scholar]
- Wilson, E.L.; Penzien, J. Evaluation of orthogonal damping matrices. Int. J. Numer. Methods Eng. 1972, 4, 5–10. [Google Scholar] [CrossRef]
- Crisp, D. Damping Models for Inelastic Structures; University of Canterbury: Christchurch, New Zealand, 1980. [Google Scholar]
- Stavrinidis, C.; Clinckemaillie, J.; Dubois, J. New concepts for finite-element mass matrix formulations. AIAA J. 1989, 27, 1249–1255. [Google Scholar] [CrossRef]
- Léger, P.; Dussault, S. Seismic-Energy Dissipation in MDOF Structures. J. Struct. Eng. 1992, 118, 1251–1269. [Google Scholar] [CrossRef]
- Hansson, P.-A.; Sandberg, G. Mass matrices by minimization of modal errors. Int. J. Numer. Methods Eng. 1997, 40, 4259–4271. [Google Scholar] [CrossRef]
- Gulkan, P.; Alemdar, B.N. An exact finite element for a beam on a two-parameter elastic foundation: A revisit. Struct. Eng. Mech. 1999, 7, 259–276. [Google Scholar] [CrossRef]
- Michaltsos, G.T.; Konstantakopoulos, T.G. A simplified dynamic analysis for estimation of the effect of rotary inertia and diaphragmatic operation on the behaviour of towers with additional masses. Struct. Eng. Mech. 2000, 10, 277–288. [Google Scholar] [CrossRef]
- Kowalsky, M.; Dwairi, H. Investigation of Jacobsen’s equivalent viscous damping approach as applied to displacement-based seismic design. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Archer, G.C.; Whalen, T.M. Development of rotationally consistent diagonal mass matrices for plate and beam elements. Comput. Methods Appl. Mech. Eng. 2005, 194, 675–689. [Google Scholar] [CrossRef]
- Val, D.V.; Segal, F. Effect of damping model on pre-yielding earthquake response of structures. Eng. Struct. 2005, 27, 1968–1980. [Google Scholar] [CrossRef]
- Wu, S.R. Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput. Methods Appl. Mech. Eng. 2006, 195, 5983–5994. [Google Scholar] [CrossRef]
- Dwairi, H.M.; Kowalsky, M.J.; Nau, J.M. Equivalent Damping in Support of Direct Displacement-Based Design. J. Earthq. Eng. 2007, 11, 512–530. [Google Scholar] [CrossRef]
- Sarigul, M.; Boyaci, H. Nonlinear vibrations of axially moving beams with multiple concentrated masses Part I: Primary resonance. Struct. Eng. Mech. 2010, 36, 149–163. [Google Scholar] [CrossRef]
- Zareian, F.; Medina, R.A. A practical method for proper modeling of structural damping in inelastic plane structural systems. Comput. Struct. 2010, 88, 45–53. [Google Scholar] [CrossRef]
- Rodrigues, H.; Varum, H.; Arêde, A.; Costa, A. A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading. Eng. Struct. 2012, 35, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Jehel, P.; Léger, P.; Ibrahimbegovic, A. Initial versus tangent stiffness-based Rayleigh damping in inelastic time history seismic analyses. Earthq. Eng. Struct. Dyn. 2014, 43, 467–484. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z.; Li, S.; Zhai, C.; Xie, L. Optimal Lumped Mass Matrices by Minimization of Modal Errors for Beam Elements. J. Vib. Acoust. 2014, 136, 021015. [Google Scholar] [CrossRef]
- Chai, Y.H.; Kowalsky, M.J. Influence of Nonviscous Damping on Seismic Inelastic Displacements. J. Struct. Stab. Dyn. 2015, 15, 1450074. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Rawat, S.R.; Bandewar, N.P.; Soman, M.Y. Consistent and lumped mass matrices in dynamics and their impact on finite element analysis results. Int. J. Mech. Eng. Technol. 2016, 7, 135–147. [Google Scholar]
- Puthanpurayil, A.M.; Lavan, O.; Carr, A.J.; Dhakal, R.P. Elemental damping formulation: An alternative modelling of inherent damping in nonlinear dynamic analysis. Bull. Earthq. Eng. 2016, 14, 2405–2434. [Google Scholar] [CrossRef]
- Pradhan, S.; Modak, S.V. Damping Matrix Identification by Finite Element Model Updating Using Frequency Response Data. Int. J. Struct. Stab. Dyn. 2017, 17, 1750004. [Google Scholar] [CrossRef]
- Carr, A.J.; Puthanpurayil, A.M.; Lavan, O.; Dhakal, R. Damping models for inelastic time-history analyses-a proposed modelling approach. In Proceedings of the 16th World Conference on Earthquake, Santiago, Chile, 9–13 January 2017. [Google Scholar]
- Zand, H.; Akbari, J. Selection of Viscous Damping Model for Evaluation of Seismic Responses of Buildings. KSCE J. Civ. Eng. 2018, 22, 4414–4421. [Google Scholar] [CrossRef]
- Kshirsagar, B.D.; Goud, S.C.; Khan, S.N. Vibration analysis of femur bone by using consistent mass matrices and fast fourier transform analyzer. Mater. Today Proc. 2020, 26, 2254–2259. [Google Scholar] [CrossRef]
- Carr, A.J. RUAUMOKO–Inelastic Dynamic Analysis Program; Department of Civil Engineering, University of Canterbury: Christchurch, New Zealand, 2016. [Google Scholar]
- Chopra, A. Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Kinoshita, T.; Nakamura, N.; Kashima, T. Characteristics of the first-mode vertical vibration of buildings based on earthquake observation records. JAPAN Archit. Rev. 2021, 4, 290–301. [Google Scholar] [CrossRef]
- Chen, W.F.; Atsuta, T. Interaction equations for biaxially loaded sections. J. Struct. Div. 1972, 98, 1035–1052. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency (FEMA). State of the Art Report on Systems Performance of Steel Moment Frames Subjected to Earthquake Ground Shaking; FEMA 355C; FEMA: Washington, DC, USA, 2000.
- American Institute of Steel Construction (AISC). Specification for Structural Steel Buildings; American Institute of Steel Construction (AISC): Chicago, IL, USA, 2010. [Google Scholar]
- ASCE Minimum. Design Loads and Associated Criteria for Buildings and Other Structures; American Society of Civil Engineers: Reston, VA, USA, 2016; ISBN 9780784414248. [Google Scholar]
- Paz, M.; Leigh, W. Structural Dynamics–Theory and Computation, 5th ed.; Kluwer Academic Publishers: Boston, MA, USA, 2004. [Google Scholar]
- Clough, R.; Penzien, J. Dynamics of Structures, 3rd ed.; Computers & Structures Inc.: Berkeley, CA, USA, 1995. [Google Scholar]
Model | Story | Columns | Girders | |
---|---|---|---|---|
Exterior | Interior | |||
1 | 1 | 14 × 257 | 14 × 311 | 33 × 118 |
2 | 14 × 257 | 14 × 311 | 30 × 116 | |
Roof | 14 × 257 | 14 × 311 | 24 × 68 | |
2 | Basement | 14 × 370 | 14 × 500 | 36 × 160 |
1 | 14 × 370 | 14 × 500 | 36 × 160 | |
2 | 14 × 370 | 14 × 500 | 36 × 160 | |
3 | 14 × 370 | 14 × 455 | 36 × 135 | |
4 | 14 × 370 | 14 × 455 | 36 × 135 | |
5 | 14 × 283 | 14 × 370 | 36 × 135 | |
6 | 14 × 283 | 14 × 370 | 36 × 135 | |
7 | 14 × 257 | 14 × 283 | 30 × 99 | |
8 | 14 × 257 | 14 × 283 | 27 × 84 | |
Roof | 14 × 233 | 14 × 257 | 24 × 68 |
Story | Columns | Girders | |
---|---|---|---|
Exterior | Interior | ||
Basement-1 | 15 × 15 × 2.00 | 24 × 335 | 14 × 22 |
Basement-2 | 15 × 15 × 2.00 | 24 × 335 | 30 × 99 |
1 | 15 × 15 × 2.00 | 24 × 335 | 30 × 99 |
2 | 15 × 15 × 2.00 | 24 × 335 | 30 × 99 |
3 | 15 × 15 × 1.25 | 24 × 335 | 30 × 99 |
4 | 15 × 15 × 1.25 | 24 × 335 | 30 × 99 |
5 | 15 × 15 × 1.25 | 24 × 335 | 30 × 108 |
6 | 15 × 15 × 1.00 | 24 × 229 | 30 × 108 |
7 | 15 × 15 × 1.00 | 24 × 229 | 30 × 108 |
8 | 15 × 15 × 1.00 | 24 × 229 | 30 × 108 |
9 | 15 × 15 × 1.00 | 24 × 229 | 30 × 108 |
10 | 15 × 15 × 1.00 | 24 × 229 | 30 × 108 |
11 | 15 × 15 × 1.00 | 24 × 229 | 30 × 99 |
12 | 15 × 15 × 1.00 | 24 × 192 | 30 × 99 |
13 | 15 × 15 × 1.00 | 24 × 192 | 30 × 99 |
14 | 15 × 15 × 1.00 | 24 × 192 | 30 × 99 |
15 | 15 × 15 × 0.75 | 24 × 131 | 30 × 99 |
16 | 15 × 15 × 0.75 | 24 × 131 | 30 × 99 |
17 | 15 × 15 × 0.75 | 24 × 131 | 27 × 84 |
18 | 15 × 15 × 0.75 | 24 × 117 | 27 × 84 |
19 | 15 × 15 × 0.75 | 24 × 117 | 24 × 62 |
20/Roof | 15 × 15 × 0.50 | 24 × 84 | 21 × 50 |
Event | Mw | R (km) | PGA (g) | Period (s) | PGV (in/s) | |||
---|---|---|---|---|---|---|---|---|
N-S | E-W | N-S | E-W | N-S | E-W | |||
Imperial Valley, 1940 | 6.9 | 10 | 0.46 | 0.68 | 0.53 | 0.46 | 12 | 10 |
Imperial Valley, 1979 | 6.5 | 4.1 | 0.39 | 0.49 | 0.16 | 0.34 | 14 | 11 |
Landers, 1992 (g) | 7.3 | 36 | 0.42 | 0.43 | 0.73 | 0.33 | 7 | 10 |
Kern, 1952 | 7.3 | 25 | 0.52 | 0.36 | 0.25 | 0.23 | 3 | 3 |
Loma Prieta, 1989 | 7 | 12.4 | 0.67 | 0.97 | 0.21 | 0.2 | 9 | 15 |
Northridge, 1994, Newhall | 6.7 | 6.7 | 0.68 | 0.66 | 0.31 | 0.31 | 9 | 22 |
Northridge, 1994, Rinaldi | 6.7 | 7.5 | 0.53 | 0.58 | 0.39 | 0.29 | 58 | 29 |
Northridge, 1994, Sylmar | 6.7 | 6.4 | 0.57 | 0.82 | 0.31 | 0.36 | 36 | 35 |
North Palm Springs, 1986 | 6 | 6.7 | 1.02 | 0.99 | 0.17 | 0.21 | 8 | 22 |
Coyote Lake, 1979 | 5.7 | 8.8 | 0.59 | 0.33 | 0.15 | 0.21 | 8 | 5 |
Morgan Hill, 1984 | 6.2 | 15 | 0.32 | 0.55 | 0.18 | 0.16 | 7 | 8 |
Parkfield, 1966, Cholame 5W | 6.1 | 3.7 | 0.78 | 0.63 | 0.37 | 0.3 | 4 | 4 |
Parkfield, 1966, Cholame 8W | 6.1 | 8 | 0.69 | 0.79 | 0.17 | 0.21 | 3 | 3 |
North Palm Springs, 1986 | 6 | 9.6 | 0.52 | 0.38 | 0.13 | 0.21 | 11 | 26 |
Whittier, 1987 | 6 | 3.62 | 0.77 | 0.48 | 0.7 | 0.28 | 11 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Beltrán, F.; Llanes-Tizoc, M.D.; Bojórquez, E.; Bojórquez, J.; Chávez, R.; Leal-Graciano, J.M.; Serrano, J.A.; Reyes-Salazar, A. Effect of the Distribution of Mass and Structural Member Discretization on the Seismic Response of Steel Buildings. Appl. Sci. 2022, 12, 433. https://doi.org/10.3390/app12010433
Valenzuela-Beltrán F, Llanes-Tizoc MD, Bojórquez E, Bojórquez J, Chávez R, Leal-Graciano JM, Serrano JA, Reyes-Salazar A. Effect of the Distribution of Mass and Structural Member Discretization on the Seismic Response of Steel Buildings. Applied Sciences. 2022; 12(1):433. https://doi.org/10.3390/app12010433
Chicago/Turabian StyleValenzuela-Beltrán, Federico, Mario D. Llanes-Tizoc, Edén Bojórquez, Juan Bojórquez, Robespierre Chávez, Jesus Martin Leal-Graciano, Juan A. Serrano, and Alfredo Reyes-Salazar. 2022. "Effect of the Distribution of Mass and Structural Member Discretization on the Seismic Response of Steel Buildings" Applied Sciences 12, no. 1: 433. https://doi.org/10.3390/app12010433
APA StyleValenzuela-Beltrán, F., Llanes-Tizoc, M. D., Bojórquez, E., Bojórquez, J., Chávez, R., Leal-Graciano, J. M., Serrano, J. A., & Reyes-Salazar, A. (2022). Effect of the Distribution of Mass and Structural Member Discretization on the Seismic Response of Steel Buildings. Applied Sciences, 12(1), 433. https://doi.org/10.3390/app12010433