Preparation of Magnetically Driven Nickel Phosphide Nanowires and Their Electrochemical Properties
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation of Nickel Phosphide Nanowires
2.2. Evaluation of Electrochemical Properties of Nickel Phosphide Nanowire Electrodes
3. Results and Discussion
3.1. Effect of Magnetic Field Strength on the Composition and Structure of Nickel Phosphide
3.2. Effect of pH and Reducing Agent on the Composition of Nickel Phosphide
3.3. Electrochemical Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, L.; Xue, H. Advances in Transition-Metal Phosphide Applications in Electrochemical Energy Storage and Catalysis. ChemElectroChem 2017, 4, 20–34. [Google Scholar] [CrossRef]
- Parra-Puerto, A.; Ng, K.L.; Fahy, K.; Goode, A.E.; Ryan, M.P.; Kucernak, A. Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catal. 2019, 9, 11515–11529. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Durai, G.; Karuppasamy, K.; Arunachalam, P.; Elakkiya, V.; Kuppusami, P.; Maiyalagan, T.; Kim, H.-S. Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors—A brief review. J. Ind. Eng. Chem. 2018, 67, 12–27. [Google Scholar] [CrossRef]
- Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chem. Rev. 2013, 113, 7981–8065. [Google Scholar] [CrossRef]
- Li, X.; Elshahawy, A.M.; Guan, C.; Wang, J. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors. Small 2017, 13, 1701530. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Weng, C.; Ren, J.; Yuan, Z. Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem 2020, 13, 3357–3375. [Google Scholar] [CrossRef]
- Popczun, E.J.; McKone, J.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. [Google Scholar] [CrossRef]
- Lu, Y.; Tu, J.P.; Xiang, J.Y.; Wang, X.L.; Zhang, J.; Mai, Y.J.; Mao, S.X. Improved Electrochemical Performance of Self-Assembled Hierarchical Nanostructured Nickel Phosphide as a Negative Electrode for Lithium Ion Batteries. J. Phys. Chem. C 2011, 115, 23760–23767. [Google Scholar] [CrossRef]
- Du, W.; Kang, R.; Geng, P.; Xiong, X.; Li, D.; Tian, Q.; Pang, H. New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles. Mater. Chem. Phys. 2015, 165, 207–214. [Google Scholar] [CrossRef]
- Liu, M.-C.; Hu, Y.-M.; An, W.-Y.; Niu, L.-Y.; Kong, L.-B.; Kang, L. Construction of high electrical conductive nickel phosphide alloys with controllable crystalline phase for advanced energy storage. Electrochimica Acta 2017, 232, 387–395. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, A.; Wang, X.; Tian, C.; An, R.; Fu, H. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 17905–17914. [Google Scholar] [CrossRef]
- Xu, J.; Yang, N.; Yu, S.; Schulte, A.; Schönherr, H.; Jiang, X. Ultra-high energy density supercapacitors using a nickel phosphide/nickel/titanium carbide nanocomposite capacitor electrode. Nanoscale 2020, 12, 13618–13625. [Google Scholar] [CrossRef] [PubMed]
- Mandel, K.; Dillon, F.; Koos, A.A.; Aslam, Z.; Jurkschat, K.; Cullen, F.; Crossley, A.; Bishop, H.; Moh, K.; Cavelius, C.; et al. Facile, fast, and inexpensive synthesis of monodisperse amorphous Nickel-Phosphide nanoparticles of predefined size. Chem. Commun. 2011, 47, 4108–4110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yuan, S.; Tian, Z.; Yin, S.; He, J.; Liu, K.; Liu, L. Nickel/Nickel Phosphide Core−Shell Structured Nanoparticles: Synthesis, Chemical, and Magnetic Architecture. Chem. Mater. 2009, 21, 4839–4845. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Kim, J.-Y.; Hanson, J.C.; Sawhill, S.J.; Bussell, M.E. Physical and Chemical Properties of MoP, Ni2P, and MoNiP Hydrodesulfurization Catalysts: Time-Resolved X-ray Diffraction, Density Functional, and Hydrodesulfurization Activity Studies. J. Phys. Chem. B 2003, 107, 6276–6285. [Google Scholar] [CrossRef]
- Wang, K.; Yang, B.; Liu, Y.; Yi, C. Preparation of Ni2P/TiO2−Al2O3 and the Catalytic Performance for Hydrodesulfurization of 3-Methylthiophene. Energy Fuels 2009, 23, 4209–4214. [Google Scholar] [CrossRef]
- Muthuswamy, E.; Brock, S.L. Solid-state phase transformations in solution: Templated conversion of nanoscale nickel phosphides. Chem. Commun. 2011, 47, 12334–12336. [Google Scholar] [CrossRef]
- Duan, X.; Lieber, C.M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, T.; Li, X.; Zhang, G.; Xue, H.; Pang, H. Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Adv. 2016, 6, 87188–87212. [Google Scholar] [CrossRef]
- Shiomi, S.; Shamsuri, S.R.; Matsubara, E. Magnetic field strength controlled liquid phase syntheses of ferromagnetic metal nanowire. Nanotechnology 2020, 31, 365602. [Google Scholar] [CrossRef]
- Wang, S.; Chen, K.; Wang, M.; Li, H.; Chen, G.; Liu, J.; Xu, L.; Jian, Y.; Meng, C.; Zheng, X.; et al. Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing. J. Mater. Chem. C 2018, 6, 4737–4745. [Google Scholar] [CrossRef]
- Cossar, E.; Houache, M.S.; Zhang, Z.; Baranova, E.A. Comparison of electrochemical active surface area methods for various nickel nanostructures. J. Electroanal. Chem. 2020, 870, 114246. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- Abrantes, L.M.; Fundo, A.; Jin, G. Influence of phosphorus content on the structure of nickel electroless deposits. J. Mater. Chem. 2001, 11, 200–203. [Google Scholar] [CrossRef] [Green Version]
- Cortijo, R.O.; Schlesinger, M. Structural Studies of Electroless Thin Ni-P Films Grown in an Alkaline Environment. J. Electrochem. Soc. 1983, 130, 2341–2344. [Google Scholar] [CrossRef]
- Kang, H.-K.; Shin, H.-C. Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode. J. Electrochem. Sci. Technol. 2020, 11, 155–164. [Google Scholar] [CrossRef]
- Loto, C.A. Electroless Nickel Plating—A Review. Silicon 2016, 8, 177–186. [Google Scholar] [CrossRef]
- Wang, D.; Kong, L.-B.; Liu, M.-C.; Zhang, W.-B.; Luo, Y.-C.; Kang, L. Amorphous Ni–P materials for high performance pseudocapacitors. J. Power Sources 2015, 274, 1107–1113. [Google Scholar] [CrossRef]
- Liu, S.; Sankar, K.V.; Kundu, A.; Ma, M.; Kwon, J.-Y.; Jun, S.C. Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 21829–21838. [Google Scholar] [CrossRef]
- He, S.; Li, Z.; Mi, H.; Ji, C.; Guo, F.; Zhang, X.; Li, Z.; Du, Q.; Qiu, J. 3D nickel-cobalt phosphide heterostructure for high-performance solid-state hybrid supercapacitors. J. Power Sources 2020, 467, 228324. [Google Scholar] [CrossRef]
- Agarwal, A.; Sankapal, B.R. Metal phosphides: Topical advances in the design of supercapacitors. J. Mater. Chem. A 2021, 9, 20241–20276. [Google Scholar] [CrossRef]
- Saleh, A.A.; Amer, A.; Sayed, D.M.; Allam, N.K. A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors. Electrochimica Acta 2021, 380, 138197. [Google Scholar] [CrossRef]
Sample Name | Concentration of Sodium Hypophosphite (M) | pH | Magnetic Field Strength (mT) |
---|---|---|---|
0L | 0.15 | 11 | 0 |
2L | 0.15 | 11 | 2 |
18L | 0.15 | 11 | 18 |
18M | 0.5 | 9 | 18 |
18H | 1 | 7 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-W.; Shin, H.-C. Preparation of Magnetically Driven Nickel Phosphide Nanowires and Their Electrochemical Properties. Appl. Sci. 2022, 12, 49. https://doi.org/10.3390/app12010049
Kim H-W, Shin H-C. Preparation of Magnetically Driven Nickel Phosphide Nanowires and Their Electrochemical Properties. Applied Sciences. 2022; 12(1):49. https://doi.org/10.3390/app12010049
Chicago/Turabian StyleKim, Hye-Won, and Heon-Cheol Shin. 2022. "Preparation of Magnetically Driven Nickel Phosphide Nanowires and Their Electrochemical Properties" Applied Sciences 12, no. 1: 49. https://doi.org/10.3390/app12010049
APA StyleKim, H. -W., & Shin, H. -C. (2022). Preparation of Magnetically Driven Nickel Phosphide Nanowires and Their Electrochemical Properties. Applied Sciences, 12(1), 49. https://doi.org/10.3390/app12010049