Predictability and Clinical Stability of Barrier Membranes in Treatment of Periodontal Intrabony Defects: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search for Identification of Studies
2.3. Screening and Selection of Studies
2.4. Data Extraction and Analysis
2.5. Risk of Bias Assessment
3. Results
3.1. Selection of Studies
3.2. Characteristics of Studies
3.3. Quality Analysis of the Studies
3.4. Meta-Analysis
3.4.1. Meta-Analysis of Probing Pocket Depth (PPD)
3.4.2. Sub-Group Analysis for Probing Pocket Depth (PPD)
3.4.3. Meta-Analysis for Clinical Attachment Levels (CAL)
3.4.4. Subgroup Analysis for Clinical Attachment Levels (CAL)
3.4.5. Meta-Analysis for Gingival Recession Coverage (GRC)
3.4.6. Meta-Analysis for Intra Bony Defect Depth (IBDD)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RCT | Randomized controlled trial |
PAL | Probing Attachment Level |
CAF | Coronally Advanced Flap |
PLA | Polyglycolide-co-Lactide |
ePTFE | Expanded Polytetrafluoroethylene |
GTR(R) | Resorbable Guided Tissue Regeneration Membrane |
GTR(NR) | Non-Resorbable Guided Tissue Regeneration Membrane |
GTR | Guided Tissue Regeneration |
PPD | Probing Pocket Depth |
CAL | Clinical Attachment Level |
FMBS | Full Mouth Bleeding Score |
GR | Gingival Recession |
REC | Recession Coverage |
PI | Plaque Index |
GI | Gingival Index |
BOP | Bleeding on Probing |
NR | Not Reported |
IBDF | Intrabony Defect Fill |
PAL | Probing Attachment Level |
PBL | Probing Bone Level |
DFDBA | Demineralized Freeze Dried Bone Allograft |
CS | Calcium Sulphate |
BG | Bioactive Glass |
NM | Non-resorbable Membrane |
RM | Resorbable Membrane |
OFD | Open Flap Debridement |
ePTFE | Expanded Polytetrafluoroethylene |
SD | Standard Deviation |
MD | Mean Difference |
MESH | Medical Subject Headings |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-analysis |
Appendix A
Author and Year of Study | Reason of Exclusion |
---|---|
Górski et al., 2017 [38] | Compared two types of RB membrane |
Kiany et al., 2015 [39] | Compared two types of RB membrane |
Chung et al., 2014 [47] | Compared two types of RB membrane |
Moder et al., 2012 [48] | Compared APC with GTR |
Gamal et al., 2012 [49] | Compared two types of RB membrane |
Budhiraja et al., 2012 [50] | Compared two types of RB membrane |
Nygaard-Østby et al., 2010 [51] | ABG and GTR is compared with bone graft |
Silvestri et al., 2010 [52] | Case series |
Orsini et al., 2008 [53] | Compared bioresorbable membrane and bone graft with bone graft alone |
Pretzl et al., 2008 [54] | Case series |
Sculean et al., 2008 [55] | Compared EMD with RB membrane |
Sculean et al., 2007 [56] | Compared GTR with OFD |
Sipos et al., 2005 [57] | Combined use of EMP and barrier membrane |
Stavropoulos et al., 2004 [41] | Case series |
Joly et al., 2002 [58] | Compared resorbable membrane with open flap debridement |
G.Zucchelli et al., 2002 [59] | Combined use of EMP and barrier membrane |
Windisch et al., 2002 [9] | Compared GTR plus EMD with EMD alone |
Lekovic et al., 2001 [60] | Compared RB with EMP and BPBM |
Sculean et al., 2001 [61] | Compared NR membrane with NR plus EMD group |
Christgau et al., 2001 [62] | Compared two types of RB membrane |
Trejo et al., 2000 [63] | Compared bioresorbable barrier membranes with decalcified freeze dried bone allograft |
Nickles et al., 2000 [64] | Compared RB with OFD |
Dörfer et al., 2000 [65] | Compared two types of RB membrane |
References
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, T.; Ono, T.; Yoshimuta, Y.; Kida, M.; Kikui, M.; Nokubi, T.; Maeda, Y.; Kokubo, Y.; Watanabe, M.; Miyamoto, Y. The effect of periodontal status and occlusal support on masticatory performance: The Suita study. J. Clin. Periodontol. 2014, 41, 497–503. [Google Scholar] [CrossRef]
- Sam, G.; Pillai, B.R.M. Evolution of Barrier Membranes in Periodontal Regeneration—“Are the third Generation Membranes really here?”. J. Clin. Diagn. Res. 2014, 8, ZE14–ZE17. [Google Scholar] [CrossRef]
- Kataria, S.; Chandrashekar, K.T.; Mishra, R.; Tripathi, V. Autogenous bone graft for management of periodontal defects. J. Int. Clin. Dent. Res. Organ. 2016, 8, 70. [Google Scholar] [CrossRef]
- Sukumar, S.; Drízhal, I.; Paulusová, V.; Bukac, J. Surgical Treatment of Periodontal Intrabony Defects with Calcium Sulphate in Combination with Beta-Tricalcium Phosphate: Clinical Observations Two Years Post-Surgery. Acta Med. 2011, 54, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Babrawala, I.; Venkatesh, P.M.L.; Varadhan, K.B. A Novel Approach Using 15% Natural Chitosan Gel in the Management of Intrabony Defects: A Pilot Study. Chin. J. Dent. Res. 2016, 19, 231–237. [Google Scholar] [CrossRef]
- Rosen, P.S.; Reynolds, M.A.; Bowers, G.M. The treatment of intrabony defects with bone grafts. Periodontology 2000, 22, 88–103. [Google Scholar] [CrossRef]
- Hanna, R.; Trejo, P.M.; Weltman, R.L. Treatment of Intrabony Defects with Bovine-Derived Xenograft Alone and in Combination with Platelet-Rich Plasma: A Randomized Clinical Trial. J. Periodontol. 2004, 75, 1668–1677. [Google Scholar] [CrossRef]
- Windisch, P.; Sculean, A.; Gera, I. GTR with three different types of membranes in the treatment of intrabony periodontal defects: Three-year results in sixty consecutive cases. J. Long. Term Eff. Med. Implants 1999, 9, 235–246. [Google Scholar]
- Parashis, A.O.; Polychronopoulou, A.; Tsiklakis, K.; Tatakis, D.N. Enamel Matrix Derivative in Intrabony Defects: Prognostic Parameters of Clinical and Radiographic Treatment Outcomes. J. Periodontol. 2012, 83, 1346–1352. [Google Scholar] [CrossRef]
- Nayak, R.; Panda, S.; Mohanty, R.; Satpathy, A. Minced Platelet Rich Fibrin with Hydroxyapatite in Surgical Treatment of Apico Marginal Periodontal Defects. Utkal Univ. J. Dent. Sci. 2015, 2, 54–59. [Google Scholar]
- Bordbar-Khiabani, A.; Gasik, M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 3665. [Google Scholar] [CrossRef]
- Panda, S.; Doraiswamy, J.; Malaiappan, S.; Varghese, S.S.; Del Fabbro, M. Additive effect of autologous platelet concentrates in treatment of intrabony defects: A systematic review and meta-analysis. J. Investig. Clin. Dent. 2016, 7, 13–26. [Google Scholar] [CrossRef]
- Panda, S.; Karanxha, L.; Goker, F.; Satpathy, A.; Taschieri, S.; Francetti, L.; Das, A.C.; Kumar, M.; Panda, S.; Del Fabbro, M. Autologous Platelet Concentrates in Treatment of Furcation Defects—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 1347. [Google Scholar] [CrossRef] [Green Version]
- Melcher, A.H. On the Repair Potential of Periodontal Tissues. J. Periodontol. 1976, 47, 256–260. [Google Scholar] [CrossRef]
- Omar, O.; Elgali, I.; Dahlin, C.; Thomsen, P. Barrier membranes: More than the barrier effect? J. Clin. Periodontol. 2019, 46 (Suppl. 21), 103–123. [Google Scholar] [CrossRef] [Green Version]
- Garrett, S.; Polson, A.M.; Stoller, N.H.; Drisko, C.L.; Caton, J.G.; Harrold, C.Q.; Bogle, G.; Greenwell, H.; Lowenguth, R.A.; Duke, S.P.; et al. Comparison of a Bioabsorbable GTR Barrier to a Non-Absorbable Barrier in Treating Human Class II Furcation Defects. A Multi-Center Parallel Design Randomized Single-Blind Trial. J. Periodontol. 1997, 68, 667–675. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Cortellini, P.; Lang, N.P.; Suvan, J.E.; Adriaens, P.; Dubravec, D.; Fonzar, A.; Fourmousis, I.; Rasperini, G.; Rossi, R.; et al. Clinical outcomes following treatment of human intrabony defects with GTR/bone replacement material or access flap alone. A multicenter randomized controlled clinical trial. J. Clin. Periodontol. 2004, 31, 770–776. [Google Scholar] [CrossRef]
- Paolantonio, M.; Femminella, B.; Coppolino, E.; Sammartino, G.; D’Arcangelo, C.; Perfetti, G.; Perinetti, G. Autogenous Periosteal Barrier Membranes and Bone Grafts in the Treatment of Periodontal Intrabony Defects of Single-Rooted Teeth: A 12-Month Reentry Randomized Controlled Clinical Trial. J. Periodontol. 2010, 81, 1587–1595. [Google Scholar] [CrossRef]
- Parrish, L.C.; Miyamoto, T.; Fong, N.; Mattson, J.S.; Cerutis, D.R. Non-bioabsorbable vs. bioabsorbable membrane: Assessment of their clinical efficacy in guided tissue regeneration technique. A systematic review. J. Oral Sci. 2009, 51, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Shen, E.C.; Chen, C.L.; Sfeir, C.; Gargiulo, A.V. Treatment of intrabony defects by polylactic acid matrix barrier—a one-year follow-up study. Periodontal Clin. Investig. 1997, 19, 22–25. [Google Scholar]
- Milella, E.; Ramires, P.A.; Brescia, E.; La Sala, G.; Di Paola, L.; Bruno, V. Physicochemical, mechanical, and biological properties of commercial membranes for GTR. J. Biomed. Mater. Res. 2001, 58, 427–435. [Google Scholar] [CrossRef]
- Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A. Toward guided tissue and bone regeneration: Morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology 2008, 96, 1–11. [Google Scholar] [CrossRef]
- Takata, T.; Wang, H.-L.; Miyauchi, M. Attachment, proliferation and differentiation of periodontal ligament cells on various guided tissue regeneration membranes. J. Periodontal Res. 2001, 36, 322–327. [Google Scholar] [CrossRef]
- Wadhawan, A.; Gowda, T.M.; Mehta, D.S. Gore-tex(®)versus resolut adapt(®)GTR membranes with perioglas(®)in periodontal regeneration. Contemp. Clin. Dent. 2012, 3, 406–411. [Google Scholar] [CrossRef]
- Eickholz, P.; Krigar, D.-M.; Kim, T.-S.; Reitmeir, P.; Rawlinson, A. Stability of Clinical and Radiographic Results After Guided Tissue Regeneration in Infrabony Defects. J. Periodontol. 2007, 78, 37–46. [Google Scholar] [CrossRef]
- Aichelmann-Reidy, M.E.; Heath, C.D.; Reynolds, M.A. Clinical Evaluation of Calcium Sulfate in Combination with Demineralized Freeze-Dried Bone Allograft for the Treatment of Human Intraosseous Defects. J. Periodontol. 2004, 75, 340–347. [Google Scholar] [CrossRef]
- Karapataki, S.; Hugoson, A.; Falk, H.; Laurell, L.; Kugelberg, C.F. Healing following GTR treatment of intrabony defects distal to mandibular 2nd molars using resorbable and non-resorbable barriers. J. Clin. Periodontol. 2000, 27, 333–340. [Google Scholar] [CrossRef]
- Zybutz, M.D.; Laurell, L.; Rapoport, D.A.; Persson, G.R. Treatment of intrabony defects with resorbable materials, non-resorbable materials and flap debridement. J. Clin. Periodontol. 2000, 27, 169–178. [Google Scholar] [CrossRef]
- Pontoriero, R.; Wennström, J.; Lindhe, J. The use of barrier membranes and enamel matrix proteins in the treatment of angular bone defects. A prospective controlled clinical study. J. Clin. Periodontol. 1999, 26, 833–840. [Google Scholar] [CrossRef]
- Macdonald, E.S.; Nowzari, H.; Contreras, A.; Flynn, J.; Morrison, J.; Slots, J. Clinical and Microbiological Evaluation of a Bioabsorbable and a Nonresorbable Barrier Membrane in the Treatment of Periodontal Intraosseous Lesions. J. Periodontol. 1998, 69, 445–453. [Google Scholar] [CrossRef]
- Cortellini, P.; Prato, G.P.; Tonetti, M.S. Periodontal Regeneration of Human Intrabony Defects with Bioresorbable Membranes. A Controlled Clinical Trial. J. Periodontol. 1996, 67, 217–223. [Google Scholar] [CrossRef]
- Queiroz, T.P.; Hochuli-Vieira, E.; Gabrielli, M.A.C.; Cancian, D.C.J. Use of bovine bone graft and bone membrane in defects surgically created in the cranial vault of rabbits. Histologic comparative analysis. Int. J. Oral Maxillofac. Implants 2006, 21, 29–35. [Google Scholar]
- Schliephake, H.; Neukam, F.W.; Hutmacher, D.; Becker, J. Enhancement of bone ingrowth into a porous hydroxylapatite-matrix using a resorbable polylactic membrane: An experimental pilot study. J. Oral Maxillofac. Surg. 1994, 52, 57–63. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.-H.; Lee, J.Y.; Cho, K.; Kang, S.S.; Kim, G.; Lee, M.J.; Choi, S.H. Effect of bone mineral with or without collagen membrane in ridge dehiscence defects following premolar extraction. In Vivo 2008, 22, 231–236. [Google Scholar]
- Lee, S.-H.; Yoon, H.-J.; Park, M.-K.; Kim, Y.-S. Guided bone regeneration with the combined use of resorbable membranes and autogenous drilling dust or xenografts for the treatment of dehiscence-type defects around implants: An experimental study in dogs. Int. J. Oral Maxillofac. Implants 2008, 23, 1089–1094. [Google Scholar]
- Rothamel, D.; Schwarz, F.; Herten, M.; Ferrari, D.; Mischkowski, R.A.; Sager, M.; Becker, J. Vertical ridge augmentation using xenogenous bone blocks: A histomorphometric study in dogs. Int. J. Oral Maxillofac. Implants 2009, 24, 243–250. [Google Scholar]
- Górski, B.; Jalowski, S.; Górska, R.; Zaremba, M. Treatment of intrabony defects with modified perforated membranes in aggressive periodontitis: A 12-month randomized controlled trial. Clin. Oral Investig. 2018, 22, 2819–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiany, F.; Moloudi, F. Amnion membrane as a novel barrier in the treatment of intrabony defects: A controlled clinical trial. Int. J. Oral Maxillofac. Implants 2015, 30, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Irokawa, D.; Takeuchi, T.; Noda, K.; Goto, H.; Egawa, M.; Tomita, S.; Sugito, H.; Nikaido, M.; Saito, A. Clinical outcome of periodontal regenerative therapy using collagen membrane and deproteinized bovine bone mineral: A 2.5-year follow-up study. BMC Res. Notes 2017, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Stavropoulos, A.; Sculean, A.; Karring, T. GTR treatment of intrabony defects with PLA/PGA copolymer or collagen bioresorbable membranes in combination with deproteinized bovine bone (Bio-Oss). Clin. Oral Investig. 2004, 8, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhao, J.; He, N. Observation on the Effect of Bone Grafting Alone and Guided Tissue Regeneration Combined with Bone Grafting to Repair Periodontal Intraosseous Defects. Evid. Based Complement. Altern. Med. 2021, 2021, 1743677. [Google Scholar] [CrossRef] [PubMed]
- Artzi, Z.; Tal, H.; Platner, O.; Wasersprung, N.; Weinberg, E.; Slutzkey, S.; Gozali, N.; Carmeli, G.; Herzberg, R.; Kozlovsky, A. Deproteinized bovine bone in association with guided tissue regeneration or enamel matrix derivatives procedures in aggressive periodontitis patients: A 1-year retrospective study. J. Clin. Periodontol. 2015, 42, 547–556. [Google Scholar] [CrossRef]
- Friedmann, A.; Stavropoulos, A.; Bilhan, H. GTR Treatment in Furcation Grade II Periodontal Defects with the Recently Reintroduced Guidor PLA Matrix Barrier: A Case Series with Chronological Step-by-Step Illustrations. Case Rep. Dent. 2020, 2020, 8856049. [Google Scholar] [CrossRef]
- Mattson, J.S.; Gallagher, S.J.; Jabro, M.H.; McLey, L.L. Complications associated with diabetes mellitus after guided tissue regeneration: Case report. Compend. Contin. Educ. Dent. 1998, 19, 923–926. [Google Scholar] [PubMed]
- Grossi, S.G.; Skrepcinski, F.B.; DeCaro, T.; Zambon, J.J.; Cummins, D.; Genco, R.J. Response to Periodontal Therapy in Diabetics and Smokers. J. Periodontol. 1996, 67, 1094–1102. [Google Scholar] [CrossRef]
- Chung, Y.-M.; Lee, J.-Y.; Jeong, S.-N. Comparative study of two collagen membranes for guided tissue regeneration therapy in periodontal intrabony defects: A randomized clinical trial. J. Periodontal Implant Sci. 2014, 44, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Moder, D.; Taubenhansl, F.; Hiller, K.-A.; Schmalz, G.; Christgau, M. Influence of autogenous platelet concentrate on combined GTR/graft therapy in intrabony defects: A 7-year follow-up of a randomized prospective clinical split-mouth study. J. Clin. Periodontol. 2012, 39, 457–465. [Google Scholar] [CrossRef]
- Gamal, A.Y.; Iacono, V.J. Enhancing Guided Tissue Regeneration of Periodontal Defects by Using a Novel Perforated Barrier Membrane. J. Periodontol. 2013, 84, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Budhiraja, S.; Bhavsar, N.; Kumar, S.; Desai, K.; Duseja, S. Evaluation of calcium sulphate barrier to collagen membrane in intrabony defects. J. Periodontal Implant Sci. 2012, 42, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Nygaard-Østby, P.; Bakke, V.; Nesdal, O.; Susin, C.; Wikesjö, U.M.E. Periodontal healing following reconstructive surgery: Effect of guided tissue regeneration using a bioresorbable barrier device when combined with autogenous bone grafting. A randomized-controlled trial 10-year follow-up. J. Clin. Periodontol. 2010, 37, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, M.; Rasperini, G.; Milani, S. 120 Infrabony Defects Treated with Regenerative Therapy: Long-Term Results. J. Periodontol. 2011, 82, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Orsini, M.; Orsini, G.; Benlloch, D.; Aranda, J.J.; Sanz, M. Long-Term Clinical Results on the Use of Bone-Replacement Grafts in the Treatment of Intrabony Periodontal Defects. Comparison of the Use of Autogenous Bone Graft Plus Calcium Sulfate to Autogenous Bone Graft Covered with a Bioabsorbable Membrane. J. Periodontol. 2008, 79, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Pretzl, B.; Kim, T.-S.; Holle, R.; Eickholz, P. Long-Term Results of Guided Tissue Regeneration Therapy with Non-Resorbable and Bioabsorbable Barriers. IV. A Case Series of Infrabony Defects After 10 Years. J. Periodontol. 2008, 79, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Kiss, A.; Miliauskaite, A.; Schwarz, F.; Arweiler, N.B.; Hannig, M. Ten-year results following treatment of intra-bony defects with enamel matrix proteins and guided tissue regeneration. J. Clin. Periodontol. 2008, 35, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Schwarz, F.; Chiantella, G.C.; Donos, N.; Arweiler, N.B.; Brecx, M.; Becker, J. Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR. J. Clin. Periodontol. 2007, 34, 72–77. [Google Scholar] [CrossRef]
- Sipos, P.M.; Loos, B.G.; Abbas, F.; Timmerman, M.F.; Van Der Velden, U. The combined use of enamel matrix proteins and a tetracycline-coated expanded polytetrafluoroethylene barrier membrane in the treatment of intra-osseous defects. J. Clin. Periodontol. 2005, 32, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Joly, J.C.; Palioto, D.B.; De Lima, A.F.M.; Mota, L.F.; Caffesse, R. Clinical and Radiographic Evaluation of Periodontal Intrabony Defects Treated with Guided Tissue Regeneration. A Pilot Study. J. Periodontol. 2002, 73, 353–359. [Google Scholar] [CrossRef]
- Zucchelli, G.; Bernardi, F.; Montebugnoli, L.; De Sanctis, M. Enamel Matrix Proteins and Guided Tissue Regeneration With Titanium-Reinforced Expanded PolytetrafluoroethyleneMembranes in the Treatment of Infrabony Defects: A Comparative Controlled Clinical Trial. J. Periodontol. 2002, 73, 3–12. [Google Scholar] [CrossRef]
- Leković, V.; Camargo, P.M.; Weinlaender, M.; Vasilic, N.; Djordjevic, M.; Kenney, E.B. The Use of Bovine Porous Bone Mineral in Combination With Enamel Matrix Proteins or With an Autologous Fibrinogen/ Fibronectin System in the Treatment of Intrabony Periodontal Defects in Humans. J. Periodontol. 2001, 72, 1157–1163. [Google Scholar] [CrossRef]
- Sculean, A.; Windisch, P.; Chiantella, G.C.; Donos, N.; Brecx, M.; Reich, E. Treatment of intrabony defects with enamel matrix proteins and guided tissue regeneration. A Prospective Controlled Clinical Study. J. Clin. Periodontol. 2001, 28, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Christgau, M.; Bader, N.; Felden, A.; Gradl, J.; Wenzel, A.; Schmalz, G. Guided tissue regeneration in intrabony defects using an experimental bioresorbable polydioxanon (PDS) membrane. A 24-Month Split-Mouth Study. J. Clin. Periodontol. 2002, 29, 710–723. [Google Scholar] [CrossRef] [PubMed]
- Trejo, P.M.; Weltman, R.; Caffesse, R. Treatment of Intraosseous Defects with Bioabsorbable Barriers Alone or in Combination With Decalcified Freeze-Dried Bone Allograft: A Randomized Clinical Trial. J. Periodontol. 2000, 71, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Nickles, K.; Neukranz, E.; Raetzke, P.; Eickholz, P.; Ratka-Krüger, P. Open flap debridement and guided tissue regeneration after 10 years in infrabony defects. J. Clin. Periodontol. 2009, 36, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Dörfer, C.E.; Kim, T.-S.; Steinbrenner, H.; Holle, R.; Eickholz, P. Regenerative periodontal surgery in interproximal intrabony defects with biodegradable barriers. J. Clin. Periodontol. 2000, 27, 162–168. [Google Scholar] [CrossRef]
Author and Year | Study Design | Age Range | Defect Characteristics | No. of Patients | No. of Sites | Test Procedure | Control Procedure | Follow-Up |
---|---|---|---|---|---|---|---|---|
Wadhaban et al., 2012 [25] | RCT split-mouth | 25–55 | Bilateral-matched intrabony defects with probing depth of ≥6 mm and radiographic evidence of angular bone loss | 10 | 20 | Bioresorbable membrane (Resolut Adapt®) and bioactive glass | Non-resorbable membrane (GoreTex®) and bioactive glass | 3, 6, 9 months |
Eickholz et al., 2007 [26] | RCT split mouth | 23–64 | A minimum of one defect having an infrabony component ≥ 3 mm | 31 | 50 | Polyglactin barrier, polylactide-tributylcitrate membrane, regenerative materialmembrane | Expanded polytetrafluoroethylene (ePTFE) barriers | 6, 60 ± 3 months |
Aichelmann-Reidy et al., 2004 [27] | RCT split mouth | >26 | Two interproximal sites with probing depth ≥ 5 mm and intrabony defects ≤ 3 mm | 19 | 38 | DFDBA plus Calcium Sulfate barrier (4:1 ratio) | DFDBA plus ePTFE (Gore TEX Periodontal Membrane) | 6 months |
Karapataki et al., 2005 [28] | RCT parallel | 43 ± 7 | Intrabony defect depth = 4 mm and probing attachment level = 6 mm | 19 | 19 | Non-resorbable e-PTFE barrier (GORE-TEX Periodontal Material) | Resorbable PLA barrier (GUIDORA bioresorbable matrix barrier) | 12 months |
Zybutz et al., 2000 [29] | RCT parallel | 48.9 | Vertical intra-bony defect of at least 3 mm as assessed from standardized intra-oral radiographs | 29 | 29 | Nonresorbable membrane (ePTFE membrane) | Resorbable membrane (polylactic acid) | 6, 12 months |
Pontoriero et al., 1999 [30] | RCT parallel | 32–61 | (PPD) of >6 mm, (PAL) of >7 mm, and a depth of the intrabony component of >3 mm. | 40 | 40 | Resorbable membrane (Resolut) and Guidor membrane | Nonresorbable membrane (Gore-Tex membrane) | 12 months |
Smith MacDonald et al., 1998 [31] | RCT split-mouth | 35–63 | 2 radiographically similar 2 to 3 wall interproximal intraosseous periodontal defects | 10 | 20 | Nonresorbable membrane (ePTFE membrane) | Resorbable membrane | 12 months |
Cortellini et al., 1996 [32] | RCT parallel | 30–58 | Deep intrabony defect, located in the area, was identified | 36 | 12 | Nonresorbable membrane | Resorbable membrane | 12 months |
Author and Year | Procedure | Test Biomaterial | Trade Name | Control Biomaterial | Trade Name | Outcomes Assessed |
---|---|---|---|---|---|---|
Wadhaban et al., 2012 [25] | OFD | RM and BG | ResolutAdapt®-W.L. Gore and Associates Inc., Flagstaff, AZ, USA | NRM and BG | Gore-Tex® membrane, W.L. Gore and Associates Inc., Flagstaff, AZ, USA | P.I, G.I., PD, CAL, GRC, IBDF |
Eickholz et al., 2007 [26] | OFD | PG/PTM | Guidor matrix barrier, Resolut Ada | expanded polytetrafluoroethylene (ePTFE) barriers | Gore-Tex Periodontal Material, W. L. Gore & Associates Inc., Flagstaff, AZ | G.I, P.I, P.D, CAL |
Aichelmann-Reidy et al., 2004 [27] | OFD | DFDBA+CS(4;1 ratio) | CapSet, Lifecore Biomedical, Inc., Chaska, MN. | DFDBA+ePTFE membrane | GoreTex Periodontal Membrane, W.L. Gore & Associates Inc., Flagstaff, AZ | PD, CAL, GRC, IBDD |
Karapataki et al., 2000 [28] | OFD | NRM | GORE-TEX Periodontal Material | RM | GUIDORA bioresorbable matrix barrier | PD, PAL, probing bone level |
Zybutz et al., 2000 [29] | OFD | NRM | Gore-Tex Periodontal Material, W. L. Gore & Associates Inc., Flagstaff, AZ | RM | Guidor Matrix Barrier, Guidor AB, Huddinge, Sweden | P.I, G.I, PPD, PAL, GR, IBD |
Pontoriero et al., 1999 [30] | OFD | NRM | Gore-Tex Periodontal Material, W. L. Gore & Associates Inc., Flagstaff, AZ | RM | Guidor Matrix Barrier, Guidor AB, Huddinge, Sweden Resolut Adapt®-W.L. Gore and Associates Inc., Flagstaff, AZ, USA | PPD, PAL, GR |
Smith MacDonald et al., 1998 [31] | OFD | NRM | Gore-Tex Periodontal Material, W. L. Gore & Associates Inc., Flagstaff, AZ | RM | Resolut, W.L. Gore and Associates Inc. | PPD, PAL, REC, depth of osseous defects |
Cortellini et al., 1996 [32] | MWF | NRM | Gore-Tex, WL. Gore and Associates Inc., Flagstaff, AZ. | RM | Flagstaff, AZ. Resolut, W.L. Gore and Associates Inc., Flagstaff, AZ. | P.I, G.I, PD, CAL, GR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Panda, S.; Nayak, R.; Mohanty, R.; Satpathy, A.; Das, A.C.; Kumar, M.; Lapinska, B. Predictability and Clinical Stability of Barrier Membranes in Treatment of Periodontal Intrabony Defects: A Systematic Review and Meta-Analysis. Appl. Sci. 2022, 12, 4835. https://doi.org/10.3390/app12104835
Das S, Panda S, Nayak R, Mohanty R, Satpathy A, Das AC, Kumar M, Lapinska B. Predictability and Clinical Stability of Barrier Membranes in Treatment of Periodontal Intrabony Defects: A Systematic Review and Meta-Analysis. Applied Sciences. 2022; 12(10):4835. https://doi.org/10.3390/app12104835
Chicago/Turabian StyleDas, Sharmistha, Saurav Panda, Rashmita Nayak, Rinkee Mohanty, Anurag Satpathy, Abhaya Chandra Das, Manoj Kumar, and Barbara Lapinska. 2022. "Predictability and Clinical Stability of Barrier Membranes in Treatment of Periodontal Intrabony Defects: A Systematic Review and Meta-Analysis" Applied Sciences 12, no. 10: 4835. https://doi.org/10.3390/app12104835
APA StyleDas, S., Panda, S., Nayak, R., Mohanty, R., Satpathy, A., Das, A. C., Kumar, M., & Lapinska, B. (2022). Predictability and Clinical Stability of Barrier Membranes in Treatment of Periodontal Intrabony Defects: A Systematic Review and Meta-Analysis. Applied Sciences, 12(10), 4835. https://doi.org/10.3390/app12104835