Application of a Cost-Effective Visible/Near Infrared Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay Grapes
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Activities
2.2. Optical Acquisition and Prototype Features
2.3. Chemical Analyses
2.4. Data Processing
3. Results
3.1. Reference Parameters (TSS, pH, TA)
3.2. Optical Readouts
3.3. Principal Component Analysis
3.4. Predictive Models
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Araújo Gomes, A.; Azcarate, S.M.; Diniz, P.H.G.D.; de Sousa Fernandes, D.D.; Veras, G. Variable selection in the chemometric treatment of food data: A tutorial review. Food Chem. 2022, 370, 131072. [Google Scholar] [CrossRef] [PubMed]
- Giovenzana, V.; Tugnolo, A.; Casson, A.; Guidetti, R.; Beghi, R. Application of visible-near infrared spectroscopy to evaluate the quality of button mushrooms. J. Near Infrared Spectrosc. 2019, 27, 38–45. [Google Scholar] [CrossRef]
- Beghi, R.; Giovenzana, V.; Brancadoro, L.; Guidetti, R. Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. J. Food Eng. 2017, 204, 46–54. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Defraeye, T.; De Ketelaere, B.; Herremans, E.; Hertog, M.L.; Saeys, W.; Torricelli, A.; Vandendriessche, T.; Verboven, P. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food Sci. Technol. 2014, 5, 285–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemps, B.; Leon, L.; Best, S.; De Baerdemaeker, J.; De Ketelaere, B. Assessment of the quality parameters in grapes using VIS/NIR spectroscopy. Biosyst. Eng. 2010, 105, 507–513. [Google Scholar] [CrossRef]
- Guidetti, R.; Beghi, R.; Bodria, L. Evaluation of grape quality parameters by a simple Vis/NIR system. Trans. ASABE 2010, 53, 477–484. [Google Scholar] [CrossRef]
- González-Caballero, V.; Sánchez, M.T.; Fernández-Novales, J.; López, M.I.; Pérez-Marín, D. On-vine monitoring of grape ripening using near-infrared spectroscopy. Food Anal. Methods 2012, 5, 1377–1385. [Google Scholar] [CrossRef]
- Giovenzana, V.; Civelli, R.; Beghi, R.; Oberti, R.; Guidetti, R. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine. Talanta 2015, 144, 584–591. [Google Scholar] [CrossRef]
- Dos Santos Costa, D.; Mesa, N.F.O.; Freire, M.S.; Ramos, R.P.; Mederos, B.J.T. Development of predictive models for quality and maturation stage attributes of wine grapes using vis-nir reflectance spectroscopy. Postharvest Biol. Technol. 2019, 150, 166–178. [Google Scholar] [CrossRef]
- Power, A.; Truong, V.K.; Chapman, J.; Cozzolino, D. From the Laboratory to The Vineyard—Evolution of The Measurement of Grape Composition using NIR Spectroscopy towards High-Throughput Analysis. High-Throughput 2019, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Vallone, M.; Alleri, M.; Bono, F.; Catania, P. Quality evaluation of grapes for mechanical harvest using vis NIR spectroscopy. Int. J. Agric. Eng. 2019, 21, 140–149. [Google Scholar]
- Casson, A.; Beghi, R.; Giovenzana, V.; Fiorindo, I.; Tugnolo, A.; Guidetti, R. Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness. Biosyst. Eng. 2020, 189, 1–10. [Google Scholar] [CrossRef]
- Tugnolo, A.; Giovenzana, V.; Beghi, R.; Grassi, S.; Alamprese, C.; Casson, A.; Casiraghi, E.; Guidetti, R. A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system. Comput. Electron. Agric. 2021, 180, 105887. [Google Scholar] [CrossRef]
- Nagpala, E.G.L.; Noferini, M.; Farneti, B.; Piccinini, L.; Costa, G. Cherry-Meter: An innovative non-destructive (vis/NIR) device for cherry fruit ripening and quality assessment. Acta Hortic. 2017, 1161, 491–496. [Google Scholar] [CrossRef]
- Ribera-Fonseca, A.; Noferini, M.; Jorquera-Fontena, E.; Rombolà, A.D. Assessment of technological maturity parameters and anthocyanins in berries of cv. Sangiovese (Vitis vinifera L.) by a portable vis/NIR device. Sci. Hortic. 2016, 209, 229–235. [Google Scholar] [CrossRef]
- Yang, B.; Guo, W.; Li, W.; Li, Q.; Liu, D.; Zhu, X. Portable, visual, and nondestructive detector integrating Vis/NIR spectrometer for sugar content of kiwifruits. J. Food Process Eng. 2019, 42, e12982. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Q.; Tian, X.; Yang, G.; Xia, Y.; Li, J.; Huang, W. Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device. Biosyst. Eng. 2020, 193, 138–148. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Zeb, A.; Qureshi, W.S.; Arslan, M.; Malik, A.U.; Alasmary, W.; Alanazi, E. Towards fruit maturity estimation using NIR spectroscopy. Infrared Phys. Technol. 2020, 111, 103479. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front. Chem. 2018, 6, 576. [Google Scholar] [CrossRef]
- Courand, A.; Metz, M.; Héran, D.; Feilhes, C.; Prezman, F.; Serrano, E.; Bendoula, R.; Ryckewaert, M. Evaluation of a robust regression method (RoBoost-PLSR) to predict biochemical variables for agronomic applications: Case study of grape berry maturity monitoring. Chemom. Intell. Lab. Syst. 2022, 221, 104485. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Pampuri, A.; Tugnolo, A.; Giovenzana, V.; Casson, A.; Guidetti, R.; Beghi, R. Design of cost-effective LED based prototypes for the evaluation of grape (Vitis vinifera L.) ripeness. Comput. Electron. Agric. 2021, 189, 106381. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J.A. The interplay between atmospheric conditions and grape berry quality parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Rustioni, L.; Fracassetti, D.; Prinsi, B.; Geuna, F.; Ancelotti, A.; Fauda, V.; Tirelli, A.; Espen, L.; Failla, O. Oxidations in white grape (Vitis vinifera L.) skins: Comparison between ripening process and photooxidative sunburn symptoms. Plant Physiol. Biochem. 2020, 150, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; de Beer, D.; Walters, N.A.; de Villiers, A.; Joubert, E.; Walczak, B. Multivariate analysis of variance of designed chromatographic data. A case study involving fermentation of rooibos tea. J. Chromatogr. A 2017, 1489, 115–125. [Google Scholar] [CrossRef]
- Tugnolo, A.; Beghi, R.; Giovenzana, V.; Guidetti, R. Characterization of green, roasted beans, and ground coffee using near infrared spectroscopy: A comparison of two devices. J. Near Infrared Spectrosc. 2019, 27, 93–104. [Google Scholar] [CrossRef]
- Civelli, R.; Giovenzana, V.; Beghi, R.; Naldi, E.; Guidetti, R.; Oberti, R. A simplified, light emitting diode (LED) based, modular system to be used for the rapid evaluation of fruit and vegetable quality: Development and validation on dye solutions. Sensors 2015, 15, 22705–22723. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.; Biancolillo, A.; Cropotova, J.; Galanakisk, C.M.; Jambrak, A.R.; et al. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–17. [Google Scholar] [CrossRef]
Wavelengths (nm) | ||||||
---|---|---|---|---|---|---|
Sensor 1 | 450 | 500 | 550 | 570 | 600 | 650 |
Sensor 2 | 610 | 680 | 730 | 760 | 810 | 860 |
Parameter | LVs | Treatment | SD * | R2CV | RMSECV | R2Pred | RMSEP | RPD |
---|---|---|---|---|---|---|---|---|
TSS | 2 | autoscaling | 5.35 | 0.88 | 1.84 | 0.87 | 1.90 | 2.81 |
pH | 2 | autoscaling | 0.26 | 0.56 | 0.18 | 0.62 | 0.14 | 1.85 |
TA | 2 | autoscaling | 8.85 | 0.83 | 3.59 | 0.80 | 3.94 | 2.25 |
Time | TSS | TA | pH | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
t0 | * | *** | ** | n.s. | *** | n.s. |
t1 | n.s. | n.s. | * | n.s. | n.s. | n.s. |
t2 | n.s. | n.s. | * | n.s. | n.s. | n.s. |
t3 | *** | *** | *** | n.s. | *** | n.s. |
Internal | Strengths | Weaknesses |
Selection of vis/NIR bands easily available on the market Real-time monitoring quality parameters of agri-food products in an objective way, directly in field or in post-harvest conditions Cost-effective smart device Remote control devices | Need to control environmental conditions during optical acquisitions High variability of agri-food quality parameters Research efforts to optimize quality parameters estimation using smart devices | |
External | Opportunities | Threats |
Optimization of agri-food chains Better management of agri-food products Waste reduction Lower environmental impact of agri-food chains Suitable also for SME | Strong link with traditional methods by operators Reduced orientation towards innovation by operators, still managed by old generation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pampuri, A.; Tugnolo, A.; Giovenzana, V.; Casson, A.; Pozzoli, C.; Brancadoro, L.; Guidetti, R.; Beghi, R. Application of a Cost-Effective Visible/Near Infrared Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay Grapes. Appl. Sci. 2022, 12, 4853. https://doi.org/10.3390/app12104853
Pampuri A, Tugnolo A, Giovenzana V, Casson A, Pozzoli C, Brancadoro L, Guidetti R, Beghi R. Application of a Cost-Effective Visible/Near Infrared Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay Grapes. Applied Sciences. 2022; 12(10):4853. https://doi.org/10.3390/app12104853
Chicago/Turabian StylePampuri, Alessia, Alessio Tugnolo, Valentina Giovenzana, Andrea Casson, Carola Pozzoli, Lucio Brancadoro, Riccardo Guidetti, and Roberto Beghi. 2022. "Application of a Cost-Effective Visible/Near Infrared Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay Grapes" Applied Sciences 12, no. 10: 4853. https://doi.org/10.3390/app12104853
APA StylePampuri, A., Tugnolo, A., Giovenzana, V., Casson, A., Pozzoli, C., Brancadoro, L., Guidetti, R., & Beghi, R. (2022). Application of a Cost-Effective Visible/Near Infrared Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay Grapes. Applied Sciences, 12(10), 4853. https://doi.org/10.3390/app12104853