Positron Emission Tomography Image Segmentation Based on Atanassov’s Intuitionistic Fuzzy Sets
Abstract
:1. Introduction
2. Fuzzy Logic-Based Image Thresholding Using A-IFSs
3. PET Image Segmentation with Iterative Thresholding Using A-IFSs
A New Approach to Perform Tumor Delineation in PET Image with Iterative Thresholding Using A-IFSs
4. Performance Evaluation
5. Results
5.1. Fixed Threshold Comparison
5.2. Comparison with Different Segmentation Algorithms
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheriet, M.; Said, J.; Suen, C. A recursive thresholding technique for image segmentation. IEEE Trans. Image Process. 1998, 7, 918–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, N.; Pal, S. A review on image segmentation techniques. Pattern Recognit. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Seerha, G.K.; Kaur, R. Review on recent image segmentation techniques. Int. J. Comput. Sci. Eng. 2013, 5, 109–112. [Google Scholar]
- Seerha, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–165. [Google Scholar]
- Vidhya, K.; Revathi, S.; Ashwini, S.S.; Vanitha, S. Review on digital image segmentation techniques. Int. Res. J. Eng. Technol. 2016, 3, 618–619. [Google Scholar]
- Zhang, Y. A survey on evaluation methods for image segmentation. Pattern Recognit. 1996, 29, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. A review of recent evaluation methods for image segmentation. In Proceedings of the Sixth International Symposium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 13–16 August 2001; Volume 1, pp. 148–151. [Google Scholar]
- Delbeke, D.; Martin, W.H. Pet and pet-ct for evaluation of colorectal carcinoma. Semin. Nucl. Med. 2004, 34, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Drever, L.; Roa, W.; McEwan, A.; Robinson, D. Iterative threshold segmentation for pet target volume delineation. Med. Phys. 2007, 34, 1253–1265. [Google Scholar] [CrossRef]
- Fahey, F.H.; Kinahan, P.E.; Doot, R.K.; Kocak, M.; Thurston, H.; Poussaint, T.Y. Variability in pet quantitation within a multicenter consortium. Med. Phys. 2010, 37, 3660–3666. [Google Scholar] [CrossRef]
- Foster, B.; Bagci, U.; Mansoor, A.; Xu, Z.; Mollura, D.J. A review on segmentation of positron emission tomography images. Comput. Biol. Med. 2014, 50, 76–96. [Google Scholar] [CrossRef] [Green Version]
- Syed, R.; Bomanji, J.B.; Nagabhushan, N.; Hughes, S.; Kayani, I.; Groves, A.; Gacinovic, S.; Hydes, N.; Visvikis, D.; Copland, C.; et al. Impact of combined 18F-FDG PET/CT in head and neck tumours. Br. J. Cancer 2005, 92, 1046–1050. [Google Scholar] [CrossRef] [Green Version]
- Paulino, A.C.; Koshy, M.; Howell, R.; Schuster, D.; Davis, L.W. Comparison of ct- and fdg-pet-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Schöder, H.; Larson, S.M.; Yeung, H.W.D. Pet/ct in oncology: Integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J. Nucl. Med. 2004, 45, 72S–81S. [Google Scholar] [PubMed]
- Townsend, D.W. Basic science of pet and pet/ct. In PET Clin; Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.Ñ., Eds.; Springer: London, UK, 2006; pp. 1–16. [Google Scholar]
- Faso, E.A.; Gambino, O.; Pirrone, R. Head–Neck Cancer Delineation. Appl. Sci. 2021, 11, 2721. [Google Scholar] [CrossRef]
- Tamal, M. A Phantom Study to Investigate Robustness and Reproducibility of Grey Level Co-Occurrence Matrix (GLCM)-Based Radiomics Features for PET. Appl. Sci. 2021, 11, 535. [Google Scholar] [CrossRef]
- Berthon, B.; Häggström, I.; Apte, A.; Beattie, B.J.; Kirov, A.S.; Humm, J.L.; Marshall, C.; Spezi, E.; Larsson, A.; Schmidtlein, C.R. Petstep: Generation of synthetic pet lesions for fast evaluation of segmentation methods. Phys. Med. 2015, 31, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Biehl, K.J.; Kong, F.-M.; Dehdashti, F.; Jin, J.-Y.; Mutic, S.; El Naqa, I.; Siegel, B.A.; Bradley, J.D. 18f-fdg pet definition of gross tumor volume for radiotherapy of non–small cell lung cancer: Is a single standardized uptake value threshold approach appropriate? J. Nucl. Med. 2006, 47, 1808–1812. [Google Scholar]
- Drever, L.; Robinson, D.M.; McEwan, A.; Roa, W. A local contrast based approach to threshold segmentation for pet target volume delineation. Med. Phys. 2006, 33, 1583–1594. [Google Scholar] [CrossRef]
- Hatt, M.; Laurent, B.; Ouahabi, A.; Fayad, H.; Tan, S.; Li, L.; Lu, W.; Jaouen, V.; Tauber, C.; Czakon, J.; et al. The first miccai challenge on pet tumor segmentation. Med. Image Anal. 2018, 44, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Hatt, M.; Cheze le Rest, C.; Turzo, A.; Roux, C.; Visvikis, D. A fuzzy locally adaptive bayesian segmentation approach for volume determination in pet. IEEE Trans. Med. Imaging 2009, 28, 881–893. [Google Scholar] [CrossRef] [Green Version]
- Jentzen, W.; Freudenberg, L.; Eising, E.G.; Heinze, M.; Brandau, W.; Bockisch, A. Segmentation of pet volumes by iterative image thresholding. J. Nucl. Med. 2007, 48, 108–114. [Google Scholar] [PubMed]
- Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Van Dalen, J.A.; Oyen, W.J.; Kaanders, J.H.A.M. Comparison of five segmentation tools for 18f-fluoro-deoxy-glucose–positron emission tomography–based target volume definition in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 69, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Vees, H.; Senthamizhchelvan, S.; Miralbell, R.; Weber, D.C.; Ratib, O.; Zaidi, H. Assessment of various strategies for 18f-fet pet-guided delineation of target volumes in high-grade glioma patients. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Kumar, V.; Hall, L.; Goldgof, D.; Li, C.; Korn, R.; Bendtsen, C.; Velazquez, E.; Dekker, A.; Aerts, H.; et al. Automated Delineation of Lung Tumors from CT Images Using a Single Click Ensemble Segmentation Approach. Pattern Recognit. 2013, 46, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Feng, Y.; Sun, J.; Zhang, N.; Lin, W.; Sa, Y.; Wang, P. Automatic lung tumor segmentation on pet/ct images using fuzzy markov random field model. Comput. Math. Methods Med. 2014, 2014, 401201. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Xiang, D.; Wang, L.; Kopriva, I.; Chen, X. Random walk and graph cut for co-segmentation of lung tumor on pet-ct images. IEEE Trans. Image Process. 2015, 24, 5854–5867. [Google Scholar] [CrossRef] [Green Version]
- Preethi, S.; Aishwarya, P. An efficient wavelet-based image fusion for brain tumor detection and segmentation over pet and mri image. Multimed. Tools. Appl. 2021, 80, 14789–14806. [Google Scholar] [CrossRef]
- Rubinstein, E.; Salhov, M.; Nidam-Leshem, M.; White, V.; Golan, S.; Baniel, J.; Bernstein, H.; Groshar, D.; Averbuch, A. Unsupervised tumor detection in dynamic pet/ct imaging of the prostate. Med. Image Anal. 2019, 55, 27–40. [Google Scholar] [CrossRef]
- Baba, S.; Isoda, T.; Maruoka, Y.; Kitamura, Y.; Sasaki, M.; Yoshida, T.; Honda, H. Diagnostic and prognostic value of pretreatment suv in 18F-FDG/PET in breast cancer: Comparison with apparent diffusion coefficient from diffusion-weighted mr imaging. J. Nucl. Med. 2014, 55, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Nestle, U.; Kremp, S.; Schaefer-Schuler, A.; Sebastian-Welsch, C.; Hellwig, D.; Rübe, C.; Kirsch, C.-M. Comparison of different methods for delineation of 18F-FDG PET–positive tissue for target volume definition in radiotherapy of patients with non–small cell lung cancer. J. Nucl. Med. 2005, 46, 1342–1348. [Google Scholar]
- Schaefer, A.; Kremp, S.; Hellwig, D.; Rübe, C.; Kirsch, C.-M.; Nestle, U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: Derivation from phantom measurements and validation in patient data. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Matheoud, R.; Della Monica, P.; Secco, C.; Loi, G.; Krengli, M.; Inglese, E.; Brambilla, M. Influence of different contributions of scatter and attenuation on the threshold values in contrast-based algorithms for volume segmentation. Phys. Med. 2011, 27, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Riegel, A.C.; Bucci, M.K.; Mawlawi, O.R.; Johnson, V.; Ahmad, M.; Sun, X.; Luo, D.; Chandler, A.G.; Pan, T. Target definition of moving lung tumors in positron emission tomography: Correlation of optimal activity concentration thresholds with object size, motion extent, and source-to-background ratio. Med. Phys. 2010, 37, 1742–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, N.V.; Couto, P.A.M.; Bustince, H.; Melo-Pinto, P. Automatic histogram threshold using fuzzy measures. IEEE Trans. Image Process. 2010, 19, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Bagci, U.; Yao, J.; Caban, J.; Turkbey, E.; Aras, O.; Mollura, D.J. A graph-theoretic approach for segmentation of PET images. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 1, pp. 8479–8482. [Google Scholar]
- Belhassen, S.; Zaidi, H. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med. Phys. 2010, 37, 1309–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 32–57. [Google Scholar] [CrossRef]
- Foster, B.; Bagci, U.; Luna, B.; Dey, B.; Bishai, W.; Jain, S.; Xu, Z.; Mollura, D.J. Robust segmentation and accurate target definition for positron emission tomography images using Affinity Propagation. In Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA, 7–11 April 2013; Volume 1, pp. 1461–1464. [Google Scholar]
- Ding, Y.; Gong, L.; Zhang, M.; Li, C.; Qin, Z. A multi-path adaptive fusion network for multimodal brain tumor segmentation. Neurocomputing 2020, 412, 19–30. [Google Scholar] [CrossRef]
- Schwyzer, M.; Ferraro, D.; Muehlematter, U.; Curioni-Fontecedro, I.; Huellner, M.; Schulthess, G.; Kaufmann, P.; Burger, I.; Messerli, M. Automated detection of lung cancer at ultralow dose pet/ct by deep neural networks—Initial results. Lung Cancer 2018, 126, 170–173. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, C.; Zhao, X.; Li, X. Multiscale mask r-cnn-based lung tumor detection using pet imaging. Mol. Imaging 2019, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Melo-Pinto, P.; Couto, P.; Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J. Image segmentation using atanassov’s intuitionistic fuzzy sets. Expert. Syst. Appl. 2013, 40, 15–26. [Google Scholar] [CrossRef]
- Day, E.; Betler, J.; Parda, D.; Reitz, B.; Kirichenko, A.; Mohammadi, S.; Miften, M. A region growing method for tumor volume segmentation on pet images for rectal and anal cancer patients. Med. Phys. 2009, 36, 4349–4358. [Google Scholar] [CrossRef] [PubMed]
- Erdi, Y.E.; Mawlawi, O.; Larson, S.M.; Imbriaco, M.; Yeung, H.; Finn, R.; Humm, J.L. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 2000, 80, 2505–2509. [Google Scholar] [CrossRef]
- Hatt, M.; Cheze Le Rest, C.; Albarghach, N.; Pradier, O.; Visvikis, D. Pet functional volume delineation: A robustness and repeatability study. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 663–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanet, M.; Lee, J.A.; Weynand, B.; De Bast, M.; Poncelet, A.; Lacroix, V.; Coche, E.; Grégoire, V.; Geets, X. Gradient-based delineation of the primary gtv on fdg-pet in non-small cell lung cancer: A comparison with threshold-based approaches, ct and surgical specimens. Radiother. Oncol. 2011, 98, 117–125. [Google Scholar] [CrossRef]
- Yu, W.; Fu, X.-L.L.; Zhang, Y.-J.J.; Xiang, J.-Q.Q.; Shen, L.; Jiang, G.-L.L.; Chang, J.Y. Gtv spatial conformity between different delineation methods by 18fdg pet/ct and pathology in esophageal cancer. Radiother. Oncol. 2009, 93, 441–446. [Google Scholar] [CrossRef]
- Mohan, D.; Ulagamuthalvi, V.; Joseph, N. Performance Comparison of Brain Tumor Segmentation Algorithms. In Advances in Computational Intelligence and Communication Technology; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 399, pp. 243–249. [Google Scholar]
- Zhou, S.; Xu, Z. Automatic grayscale image segmentation based on affinity propagation clustering. Pattern Anal. Appl. 2020, 23, 331–348. [Google Scholar] [CrossRef]
- Bal, A.; Banerjee, M.; Chakrabarti, A.; Sharma, P. MRI Brain Tumor Segmentation and Analysis using Rough-Fuzzy C-Means and Shape Based Properties. J. King Saud Univ. Sci. 2022, 34, 115–133. [Google Scholar] [CrossRef]
T Max | PET 1 | PET 2 | PET 3 | PET 4 | ... | Average |
---|---|---|---|---|---|---|
30% | 0.33777 | 0.82292 | 0.21323 | 0.72679 | ... | 0.29735 |
32% | 0.39137 | 0.87486 | 0.24328 | 0.76301 | ... | 0.32694 |
34% | 0.47370 | 0.92075 | 0.2837 | 0.8021 | ... | 0.36072 |
36% | 0.57546 | 0.96107 | 0.33012 | 0.84333 | ... | 0.40531 |
38% | 0.65011 | 0.99367 | 0.38675 | 0.87995 | ... | 0.46184 |
40% | 0.72352 | 0.92911 | 0.45873 | 0.93108 | ... | 0.52214 |
42% | 0.77205 | 0.89241 | 0.49902 | 0.97316 | ... | 0.56530 |
44% | 0.79987 | 0.84684 | 0.53415 | 0.98113 | ... | 0.60077 |
46% | 0.82646 | 0.80127 | 0.57098 | 0.93904 | ... | 0.63505 |
48% | 0.86802 | 0.76456 | 0.60362 | 0.88824 | ... | 0.66256 |
50% | 0.90863 | 0.72911 | 0.63573 | 0.84615 | ... | 0.68626 |
52% | 0.95322 | 0.67975 | 0.66405 | 0.80697 | ... | 0.69683 |
54% | 0.99361 | 0.64684 | 0.68339 | 0.76633 | ... | 0.70175 |
56% | 0.96299 | 0.59494 | 0.70585 | 0.73295 | ... | 0.70384 |
58% | 0.91231 | 0.54937 | 0.73068 | 0.69231 | ... | 0.70475 |
60% | 0.86323 | 0.47722 | 0.75642 | 0.64586 | ... | 0.70115 |
Number of Images: 40 | |||
---|---|---|---|
Min | Average | Max | |
t40% | 0.16199 | 0.52214 | 0.96322 |
t50% | 0.28319 | 0.68626 | 0.98023 |
t58% | 0.31577 | 0.70475 | 0.98688 |
K-Means | 0.04167 | 0.65334 | 0.98688 |
FCM | 0.02005 | 0.46292 | 0.98586 |
AP | 0.28319 | 0.69397 | 1 |
A-IFSs | 0.09229 | 0.76492 | 1 |
Number of Images: 40 | |||
---|---|---|---|
Min | Average | Max | |
t40% | 0.97498 | 0.99223 | 0.99988 |
t50% | 0.98842 | 0.99693 | 0.99995 |
t58% | 0.99693 | 0.99777 | 0.99997 |
K-Means | 0.99092 | 0.99732 | 0.99997 |
FCM | 0.86800 | 0.97388 | 0.99996 |
AP | 0.98847 | 0.99696 | 1 |
A-IFSs | 0.99235 | 0.99843 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, P.; Bento, T.; Bustince, H.; Melo-Pinto, P. Positron Emission Tomography Image Segmentation Based on Atanassov’s Intuitionistic Fuzzy Sets. Appl. Sci. 2022, 12, 4865. https://doi.org/10.3390/app12104865
Couto P, Bento T, Bustince H, Melo-Pinto P. Positron Emission Tomography Image Segmentation Based on Atanassov’s Intuitionistic Fuzzy Sets. Applied Sciences. 2022; 12(10):4865. https://doi.org/10.3390/app12104865
Chicago/Turabian StyleCouto, Pedro, Telmo Bento, Humberto Bustince, and Pedro Melo-Pinto. 2022. "Positron Emission Tomography Image Segmentation Based on Atanassov’s Intuitionistic Fuzzy Sets" Applied Sciences 12, no. 10: 4865. https://doi.org/10.3390/app12104865
APA StyleCouto, P., Bento, T., Bustince, H., & Melo-Pinto, P. (2022). Positron Emission Tomography Image Segmentation Based on Atanassov’s Intuitionistic Fuzzy Sets. Applied Sciences, 12(10), 4865. https://doi.org/10.3390/app12104865